Extremals in the Markov – Dubins Problem with Control on a Triangle
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 27-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

We formulate a time-optimal problem for a differential drive robot with bounded positive velocities of the driving wheels. This problem is equivalent to a generalization of the classical Markov – Dubins problem with an extended domain of control. We classify all extremal controls via the Pontryagin maximum principle. Some optimality conditions are obtained; therefore, the optimal synthesis is reduced to the enumeration of a finite number of possible solutions.
Keywords: differential drive robot, Markov – Dubins problem, extremal trajectories, Pontryagin maximum principle
@article{ND_2024_20_1_a2,
     author = {A. A. Ardentov},
     title = {Extremals in the {Markov} {\textendash} {Dubins} {Problem} with {Control} on a {Triangle}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {27--42},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_1_a2/}
}
TY  - JOUR
AU  - A. A. Ardentov
TI  - Extremals in the Markov – Dubins Problem with Control on a Triangle
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 27
EP  - 42
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_1_a2/
LA  - en
ID  - ND_2024_20_1_a2
ER  - 
%0 Journal Article
%A A. A. Ardentov
%T Extremals in the Markov – Dubins Problem with Control on a Triangle
%J Russian journal of nonlinear dynamics
%D 2024
%P 27-42
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_1_a2/
%G en
%F ND_2024_20_1_a2
A. A. Ardentov. Extremals in the Markov – Dubins Problem with Control on a Triangle. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 27-42. http://geodesic.mathdoc.fr/item/ND_2024_20_1_a2/

[1] Agrachev, A. A. and Sachkov, Yu. L., Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., 87, Springer, Berlin, 2004, xiv, 412 pp. | DOI | MR | Zbl

[2] Ardentov, A. A., Lokutsievskiy, L. V., and Sachkov, Yu. L., “Extremals for a Series of Sub-Finsler Problems with $2$-Dimensional Control via Convex Trigonometry”, ESAIM Control Optim. Calc. Var., 27 (2021), Paper No. 32, 52 pp. | DOI | MR | Zbl

[3] Bakolas, E. and Tsiotras, P., “The Asymmetric Sinistral/Dextral Markov – Dubins Problem”, Proc. of the 48th IEEE Conf. on Decision and Control (CDC) held jointly with 28th Chinese Control Conf. (Shanghai, China, 2009), 5649–5654

[4] Xuan-Nam Bui, Boissonnat, J.-D., Soueres, P., and Laumond, J.-P., “Shortest Path Synthesis for Dubins Non-Holonomic Robot”, Proc. of the 1994 IEEE Internat. Conf. on Robotics and Automation (San Diego, Calif., USA, 1994), Vol. 1, 2–7

[5] Dolinskaya, I. S. and Maggiar, A., “Time-Optimal Trajectories with Bounded Curvature in Anisotropic Media”, Int. J. Rob. Res., 31:14 (2012), 1761–1793 | DOI

[6] Dubins, L. E., “On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents”, Am. J. Math., 79:3 (1957), 497–516 | DOI | MR | Zbl

[7] Kaya, C. Y., Markov – Dubins Path via Optimal Control Theory, Comput. Optim. Appl., 68:3 (2017), 719–747 | DOI | MR | Zbl

[8] Kumar, D. P., Darbha, S., Manyam, S. G., and Casbeer, D.,, “The Weighted Markov – Dubins Problem”, IEEE Robot. Autom. Lett., 8:3 (2023), 1563–1570 | DOI

[9] Markov, A. A., “Some Examples of the Solution of a Special Kind of Problem on Greatest and Least Quantities”, Soobshch. Kharkov. Mat. Obshch., Ser. 2, 1:5–6 (1887), 250–276 (Russian)

[10] Sovrem. Mat. Fundam. Napravl., 27 (2007), 5–59 (Russian) | DOI | MR | Zbl

[11] Uspekhi Mat. Nauk, 77:1(463) (2022), 109–176 (Russian) | DOI | DOI | MR | Zbl

[12] Zhang, X., Chen, J., and Xin, B., “Path Planning for Unmanned Aerial Vehicles in Surveillance Tasks under Wind Fields”, J. Cent. South Univ., 21:8 (2014), 3079–3091 | DOI | MR