Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_1_a2, author = {A. A. Ardentov}, title = {Extremals in the {Markov} {\textendash} {Dubins} {Problem} with {Control} on a {Triangle}}, journal = {Russian journal of nonlinear dynamics}, pages = {27--42}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_1_a2/} }
A. A. Ardentov. Extremals in the Markov – Dubins Problem with Control on a Triangle. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 27-42. http://geodesic.mathdoc.fr/item/ND_2024_20_1_a2/
[1] Agrachev, A. A. and Sachkov, Yu. L., Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., 87, Springer, Berlin, 2004, xiv, 412 pp. | DOI | MR | Zbl
[2] Ardentov, A. A., Lokutsievskiy, L. V., and Sachkov, Yu. L., “Extremals for a Series of Sub-Finsler Problems with $2$-Dimensional Control via Convex Trigonometry”, ESAIM Control Optim. Calc. Var., 27 (2021), Paper No. 32, 52 pp. | DOI | MR | Zbl
[3] Bakolas, E. and Tsiotras, P., “The Asymmetric Sinistral/Dextral Markov – Dubins Problem”, Proc. of the 48th IEEE Conf. on Decision and Control (CDC) held jointly with 28th Chinese Control Conf. (Shanghai, China, 2009), 5649–5654
[4] Xuan-Nam Bui, Boissonnat, J.-D., Soueres, P., and Laumond, J.-P., “Shortest Path Synthesis for Dubins Non-Holonomic Robot”, Proc. of the 1994 IEEE Internat. Conf. on Robotics and Automation (San Diego, Calif., USA, 1994), Vol. 1, 2–7
[5] Dolinskaya, I. S. and Maggiar, A., “Time-Optimal Trajectories with Bounded Curvature in Anisotropic Media”, Int. J. Rob. Res., 31:14 (2012), 1761–1793 | DOI
[6] Dubins, L. E., “On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents”, Am. J. Math., 79:3 (1957), 497–516 | DOI | MR | Zbl
[7] Kaya, C. Y., Markov – Dubins Path via Optimal Control Theory, Comput. Optim. Appl., 68:3 (2017), 719–747 | DOI | MR | Zbl
[8] Kumar, D. P., Darbha, S., Manyam, S. G., and Casbeer, D.,, “The Weighted Markov – Dubins Problem”, IEEE Robot. Autom. Lett., 8:3 (2023), 1563–1570 | DOI
[9] Markov, A. A., “Some Examples of the Solution of a Special Kind of Problem on Greatest and Least Quantities”, Soobshch. Kharkov. Mat. Obshch., Ser. 2, 1:5–6 (1887), 250–276 (Russian)
[10] Sovrem. Mat. Fundam. Napravl., 27 (2007), 5–59 (Russian) | DOI | MR | Zbl
[11] Uspekhi Mat. Nauk, 77:1(463) (2022), 109–176 (Russian) | DOI | DOI | MR | Zbl
[12] Zhang, X., Chen, J., and Xin, B., “Path Planning for Unmanned Aerial Vehicles in Surveillance Tasks under Wind Fields”, J. Cent. South Univ., 21:8 (2014), 3079–3091 | DOI | MR