Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_1_a10, author = {E. M. Osenkov and O. V. Pochinka}, title = {Morse {\textendash} {Smale} {3-Diffeomorphisms} with {Saddles} of the {Same} {Unstable} {Manifold} {Dimension}}, journal = {Russian journal of nonlinear dynamics}, pages = {167--178}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_1_a10/} }
TY - JOUR AU - E. M. Osenkov AU - O. V. Pochinka TI - Morse – Smale 3-Diffeomorphisms with Saddles of the Same Unstable Manifold Dimension JO - Russian journal of nonlinear dynamics PY - 2024 SP - 167 EP - 178 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_1_a10/ LA - en ID - ND_2024_20_1_a10 ER -
%0 Journal Article %A E. M. Osenkov %A O. V. Pochinka %T Morse – Smale 3-Diffeomorphisms with Saddles of the Same Unstable Manifold Dimension %J Russian journal of nonlinear dynamics %D 2024 %P 167-178 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2024_20_1_a10/ %G en %F ND_2024_20_1_a10
E. M. Osenkov; O. V. Pochinka. Morse – Smale 3-Diffeomorphisms with Saddles of the Same Unstable Manifold Dimension. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 167-178. http://geodesic.mathdoc.fr/item/ND_2024_20_1_a10/
[1] Hurewicz, W. and Wallman, H., Dimension Theory, reprint edition (originally published in 1941), Princeton Math. Ser., 4, Princeton Univ. Press, Princeton, N.J., 2015, 174 pp. | MR
[2] Grines, V., Medvedev, T., and Pochinka, O., Dynamical Systems on $2$- and $3$-Manifolds, v. 46, Dev. Math., Springer, New York, 2016, xxvi, 295 pp. | MR | Zbl
[3] Palis, J. and Smale, S., “Structural Stability Theorems”, The Collected Papers of Stephen Smale: In 3 Vols, v. 2, eds. F. Cucker, R. Wong, World Sci., River Edge, N.J., 2000, 739–747 | DOI | MR
[4] Bonatti, C. and Grines, V., “Knots As Topological Invariants for Gradient-Like Diffeomorphisms of the Sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602 | DOI | MR | Zbl
[5] Bonatti, C., Grines, V., Medvedev, V., and Pécou, E., “Three-Manifolds Admitting Morse – Smale Diffeomorphisms without Heteroclinic Curves”, Topology Appl., 117:3 (2002), 335–344 | DOI | MR | Zbl
[6] Mat. Sb., 194:7 (2003), 25–56 (Russian) | DOI | DOI | MR | Zbl
[7] Tr. Mat. Inst. Steklova, 271 (2010), 111–133 (Russian) | DOI | MR | Zbl
[8] Medvedev, V. and Zhuzhoma, E., “Supporting Manifolds for High-Dimensional Morse – Smale Diffeomorphisms with Few Saddles”, Topology Appl., 282 (2020), 107315, 11 pp. | DOI | MR | Zbl
[9] Munkres, J., “Obstructions to the Smoothing of Piecewise-Differentiable Homeomorphisms”, Ann. of Math. (2), 72:3 (1960), 521–554 | DOI | MR | Zbl
[10] Munkres, J., Topology, 2nd ed., Prentice Hall, Upper Saddle River, N.J., 2000, 537 pp. | MR | Zbl
[11] Palis, J., “On Morse – Smale Dynamical Systems”, Topology, 8:4 (1968), 385–404 | DOI | MR
[12] Reeb, G., “Sur les points singuliers d'une forme de Pfaff complétement intégrable ou d'une fonction numérique”, C. R. Acad. Sci. Paris, 222 (1946), 847–849 | MR | Zbl
[13] Robinson, C., Dynamical Systems: Stability, Symbolic Dynamics, Chaos, Stud. Adv. Math., 28, 2nd ed., CRC, Boca Raton, Fla., 1998, 520 pp. | MR
[14] Smale, S., “Differentiable Dynamical Systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl
[15] Smale, S., “Morse Inequalities for a Dynamical System”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | DOI | MR | Zbl
[16] Szpilrajn, E., “Sur l'extension de l'ordre partiel”, Fund. Math., 16:1 (1930), 386–389 | DOI