Morse – Smale 3-Diffeomorphisms with Saddles of the Same Unstable Manifold Dimension
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 167-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a class of Morse – Smale diffeomorphisms defined on a closed 3-manifold (not necessarily orientable) under the assumption that all their saddle points have the same dimension of the unstable manifolds. The simplest example of such diffeomorphisms is the well-known “source-sink” or “north pole – south pole” diffeomorphism, whose non-wandering set consists of exactly one source and one sink. As Reeb showed back in 1946, such systems can only be realized on the sphere. We generalize his result, namely, we show that diffeomorphisms from the considered class also can be defined only on the 3-sphere.
Keywords: Morse – Smale diffeomorphisms, ambient manifold topology, invariant manifolds, heteroclinic orbits, hyperbolic dynamics
@article{ND_2024_20_1_a10,
     author = {E. M. Osenkov and O. V. Pochinka},
     title = {Morse {\textendash} {Smale} {3-Diffeomorphisms} with {Saddles} of the {Same} {Unstable} {Manifold} {Dimension}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {167--178},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_1_a10/}
}
TY  - JOUR
AU  - E. M. Osenkov
AU  - O. V. Pochinka
TI  - Morse – Smale 3-Diffeomorphisms with Saddles of the Same Unstable Manifold Dimension
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 167
EP  - 178
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_1_a10/
LA  - en
ID  - ND_2024_20_1_a10
ER  - 
%0 Journal Article
%A E. M. Osenkov
%A O. V. Pochinka
%T Morse – Smale 3-Diffeomorphisms with Saddles of the Same Unstable Manifold Dimension
%J Russian journal of nonlinear dynamics
%D 2024
%P 167-178
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_1_a10/
%G en
%F ND_2024_20_1_a10
E. M. Osenkov; O. V. Pochinka. Morse – Smale 3-Diffeomorphisms with Saddles of the Same Unstable Manifold Dimension. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 167-178. http://geodesic.mathdoc.fr/item/ND_2024_20_1_a10/

[1] Hurewicz, W. and Wallman, H., Dimension Theory, reprint edition (originally published in 1941), Princeton Math. Ser., 4, Princeton Univ. Press, Princeton, N.J., 2015, 174 pp. | MR

[2] Grines, V., Medvedev, T., and Pochinka, O., Dynamical Systems on $2$- and $3$-Manifolds, v. 46, Dev. Math., Springer, New York, 2016, xxvi, 295 pp. | MR | Zbl

[3] Palis, J. and Smale, S., “Structural Stability Theorems”, The Collected Papers of Stephen Smale: In 3 Vols, v. 2, eds. F. Cucker, R. Wong, World Sci., River Edge, N.J., 2000, 739–747 | DOI | MR

[4] Bonatti, C. and Grines, V., “Knots As Topological Invariants for Gradient-Like Diffeomorphisms of the Sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602 | DOI | MR | Zbl

[5] Bonatti, C., Grines, V., Medvedev, V., and Pécou, E., “Three-Manifolds Admitting Morse – Smale Diffeomorphisms without Heteroclinic Curves”, Topology Appl., 117:3 (2002), 335–344 | DOI | MR | Zbl

[6] Mat. Sb., 194:7 (2003), 25–56 (Russian) | DOI | DOI | MR | Zbl

[7] Tr. Mat. Inst. Steklova, 271 (2010), 111–133 (Russian) | DOI | MR | Zbl

[8] Medvedev, V. and Zhuzhoma, E., “Supporting Manifolds for High-Dimensional Morse – Smale Diffeomorphisms with Few Saddles”, Topology Appl., 282 (2020), 107315, 11 pp. | DOI | MR | Zbl

[9] Munkres, J., “Obstructions to the Smoothing of Piecewise-Differentiable Homeomorphisms”, Ann. of Math. (2), 72:3 (1960), 521–554 | DOI | MR | Zbl

[10] Munkres, J., Topology, 2nd ed., Prentice Hall, Upper Saddle River, N.J., 2000, 537 pp. | MR | Zbl

[11] Palis, J., “On Morse – Smale Dynamical Systems”, Topology, 8:4 (1968), 385–404 | DOI | MR

[12] Reeb, G., “Sur les points singuliers d'une forme de Pfaff complétement intégrable ou d'une fonction numérique”, C. R. Acad. Sci. Paris, 222 (1946), 847–849 | MR | Zbl

[13] Robinson, C., Dynamical Systems: Stability, Symbolic Dynamics, Chaos, Stud. Adv. Math., 28, 2nd ed., CRC, Boca Raton, Fla., 1998, 520 pp. | MR

[14] Smale, S., “Differentiable Dynamical Systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl

[15] Smale, S., “Morse Inequalities for a Dynamical System”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | DOI | MR | Zbl

[16] Szpilrajn, E., “Sur l'extension de l'ordre partiel”, Fund. Math., 16:1 (1930), 386–389 | DOI