Attractive Impurity as a Generator of Wobbling Kinks
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 15-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

The $\varphi^4$ theory is widely used in many areas of physics, from cosmology and elementary particle physics to biophysics and condensed matter theory. However, in the $\varphi^4$ model, there are no spatially localized solutions in the form of breathers. Topological defects, or kinks, in this theory describe stable, solitary wave excitations. In practice, these excitations, as they propagate, necessarily interact with impurities or imperfections in the on-site potential. In this work, with the help of numerical calculations using the method of lines, the interaction of the kink in the $\varphi^4$ model with extended impurities is considered. The case of an attractive rectangular impurity is analyzed. It is found that after the kink-impurity interaction, an internal mode with frequency $\sqrt{\frac32}$ is excited on the kink and it becomes a wobbling kink. It is shown that with the help of kink-impurity interaction, an extended rectangular attracting impurity, as well as a point impurity, can be used as a generator for excitation of long-lived high-amplitude localized breather waves. The structure of the excited wobbling breather (or wobbler), which consists of a compact core and an extended tail, is described. It is shown that the wobbler tail has the form of a spatially unbounded quasi-sinusoidal function with a classical frequency $\sqrt{2}$. To determine the lifetime of the wobbler, the dependence of the amplitude of the impurity mode on time is found. For the case of small impurities, it turned out that it practically does not change for a long time. For the case of large impurities, the wobbler amplitude begins to noticeably decrease with time. The frequency of wobbler oscillations does not depend on the initial velocity of the kink. The dependence of the impurity mode oscillation amplitude on the initial kink velocity has minima and maxima. By changing the impurity parameters, one can also control the dynamic parameters of the wobbler. A linear approximation is considered that allows an analytical solution of the problem for localized breather waves, and the limits of its applicability for this model are found.
Keywords: $\varphi^4$ model, impurity, soliton theory, wobbling kink, wobbler
@article{ND_2024_20_1_a1,
     author = {M. I. Fakhretdinov and K. Y. Samsonov and S. V. Dmitriev and E. G. Ekomasov},
     title = {Attractive {Impurity} as a {Generator} of {Wobbling} {Kinks}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {15--26},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_1_a1/}
}
TY  - JOUR
AU  - M. I. Fakhretdinov
AU  - K. Y. Samsonov
AU  - S. V. Dmitriev
AU  - E. G. Ekomasov
TI  - Attractive Impurity as a Generator of Wobbling Kinks
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 15
EP  - 26
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_1_a1/
LA  - en
ID  - ND_2024_20_1_a1
ER  - 
%0 Journal Article
%A M. I. Fakhretdinov
%A K. Y. Samsonov
%A S. V. Dmitriev
%A E. G. Ekomasov
%T Attractive Impurity as a Generator of Wobbling Kinks
%J Russian journal of nonlinear dynamics
%D 2024
%P 15-26
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_1_a1/
%G en
%F ND_2024_20_1_a1
M. I. Fakhretdinov; K. Y. Samsonov; S. V. Dmitriev; E. G. Ekomasov. Attractive Impurity as a Generator of Wobbling Kinks. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 15-26. http://geodesic.mathdoc.fr/item/ND_2024_20_1_a1/

[1] A Dynamical Perspective on the $\varphi^4$ Model: Past, Present and Future, Nonlinear Syst. Complex., 26, eds. P. Kevrekidis, J. Cuevas-Maraver, Springer, Cham, 2019, 332 pp. | MR

[2] Uspekhi Fiz. Nauk, 167:4 (1997), 377–406 (Russian) | DOI | DOI

[3] Abdullina, D. U., Bebikhov, Yu. V., Khazimullin, M. V., Kudreyko, A. A., and Dmitriev, S. V., “Atom Deposition and Sputtering at Normal Incidence Simulated by the Frenkel – Kontorova Chain”, Phys. Rev. E, 106:2 (2022), Art. 024207, 13 pp. | DOI

[4] He, J.-H., He, C.-H., and Alsolami, A. A., “A Good Initial Guess for Approximating Nonlinear Oscillators by the Homotopy Perturbation Method”, Facta Univ. Ser.: Mech. Eng., 21:1 (2023), 21–29 | MR

[5] Yamaletdinov, R. D., Slipko, V. A., and Pershin, Yu. V., “Kinks and Antikinks of Buckled Graphene: A Testing Ground for the $\varphi^4$ Field Model”, Phys. Rev. B, 96:9 (2017), Art. 094306, 5 pp. | DOI

[6] Yamaletdinov, R. D., Romańczukiewicz, T., and Pershin, Yu. V., “Manipulating Graphene Kinks through Positive and Negative Radiation Pressure Effects”, Carbon, 141 (2019), 253–257 | DOI

[7] The Sine-Gordon Model and Its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics, Nonlinear Syst. Complex., 10, eds. J. Cuevas-Maraver, P. Kevrekidis, F. Williams, Springer, Cham, 2014, xiii, 263 pp. | MR | Zbl

[8] Belova, T. I. and Kudryavtsev, A. E., “Quasi-Periodic Orbits in the Scalar Classical $\lambda\phi^4$ Field Theory”, Phys. D, 32:1 (1988), 18–26 | DOI | MR

[9] Marjaneh, A. M., Saadatmand, D., Zhou, K., Dmitriev, S. V., and Zomorrodian, M. E., “High Energy Density in the Collision of $N$ Kinks in the $\phi^4$ Model”, Commun. Nonlinear Sci. Numer. Simul., 49 (2017), 30–38 | DOI | MR | Zbl

[10] Takyi, I. and Weigel, H., “Collective Coordinates in One-Dimensional Soliton Models Revisited”, Phys. Rev. D, 94:8 (2016), Art. 085008, 11 pp. | DOI

[11] Zh. Èksper. Teoret. Fiz., 109:3 (1996), 1090–1099 (Russian)

[12] Malomed, B. A., “Perturbative Analysis of the Interaction of a $\varphi^4$ Kink with Inhomogeneities”, J. Phys. A, 25:4 (1992), 755–764 | DOI | MR

[13] Fei, Zh., Kivshar, Yu. S., and Vázquez, L., “Resonant Kink-Impurity Interactions in the $\varphi^4$ Model”, Phys. Rev. A, 46:8 (1992), 5214–5220 | DOI

[14] Romańczukiewicz, T., “Creation of Kink and Antikink Pairs Forced by Radiation”, J. Phys. A, 39:13 (2006), 3479–3494 | DOI | MR | Zbl

[15] Alonso Izquierdo, A., Queiroga-Nunes, J., and Nieto, L. M., “Scattering between Wobbling Kinks”, Phys. Rev. D, 103:4 (2021), Paper No. 045003, 16 pp. | MR

[16] Segur, H., “Wobbling Kinks in $\varphi^4$ and Sine-Gordon Theory”, J. Math. Phys., 24:6 (1983), 1439–1443 | DOI | MR

[17] Barashenkov, I. V. and Oxtoby, O. F., “Wobbling Kinks in $\varphi^4$ Theory”, Phys. Rev. E, 80:2 (2009), Art. 026608, 9 pp. | DOI | MR

[18] Savin, A. V. and Dmitriev, S. V., “Influence of the Internal Degrees of Freedom of Coronene Molecules on the Nonlinear Dynamics of a Columnar Chain”, Phys. Rev. E, 107:5 (2023), Paper No. 054216, 11 pp. | DOI | MR

[19] Savin, A. V., Sunagatova, I. R., and Dmitriev, S. V., “Rotobreathers in a Chain of Coupled Elastic Rotators”, Phys. Rev. E, 104:3 (2021), Paper No. 034207, 11 pp. | DOI | MR

[20] Rysaeva, L. Kh., Bachurin, D. V., Murzaev, R. T., Abdullina, D. U., Korznikova, E. A., Mulyukov, R. R., and Dmitriev, S. V., “Evolution of the Carbon Nanotube Bundle Structure under Biaxial and Shear Strains”, Facta Univ. Ser.: Mech. Eng., 18:4 (2020), 525–536

[21] Savin, A. V. and Dmitriev, S. V., “The Frequency Spectrum of Rotobreathers with Many Degrees of Freedom”, Europhys. Lett., 137:3 (2022), Art. 36005, 7 pp. | DOI

[22] Teoret. Mat. Fiz., 60:3 (1984), 395–403 (Russian) | DOI | MR

[23] Segur, H. and Kruskal, M. D., “Nonexistence of Small-Amplitude Breather Solutions in $\phi^4$ Theory”, Phys. Rev. Lett., 58:8 (1987), 747–750 | DOI | MR

[24] Oxtoby, O. F. and Barashenkov, I. V., “Resonantly Driven Wobbling Kinks”, Phys. Rev. E, 80:2 (2009), Art. 026609, 17 pp. | DOI

[25] Grimshaw, R., “Exponential Asymptotics and Generalized Solitary Waves”, Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances, CISM Courses and Lect., 523, ed. H. Steinrück, Springer, Vienna, 2010, 71–120, vi, 420 pp. | MR | Zbl

[26] Pis'ma v Zh. Èksper. Teoret. Fiz., 24:5 (1976), 323–327 (Russian)

[27] Alonso-Izquierdo, A., Miguélez-Caballero, D., Nieto, L. M., and Queiroga-Nunes, J., “Wobbling Kinks in a Two-Component Scalar Field Theory: Interaction between Shape Modes”, Phys. D, 443 (2023), Paper No. 133590, 15 pp. | DOI | MR

[28] Alonso-Izquierdo, A., Nieto, L. M., and Queiroga-Nunes, J., “Asymmetric Scattering between Kinks and Wobblers”, Commun. Nonlinear Sci. Numer. Simul., 107 (2022), Paper No. 106183, 14 pp. | DOI | MR

[29] Teoret. Mat. Fiz., 159:3 (2009), 527–535 (Russian) | DOI | DOI | MR

[30] Fiz. Nizk. Temp., 47:2 (2021), 173–183 (Russian) | DOI

[31] Fiz. Nizk. Temp., 47:6 (2021), 483–490 (Russian) | DOI

[32] Alejo, M. A., Muñoz, C., and Palacios, J. M., “On Asymptotic Stability of the Sine-Gordon Kink in the Energy Space”, Commun. Math. Phys., 402:1 (2023), 581–636 | DOI | MR | Zbl

[33] Borisov, D. I. and Dmitriev, S. V., “On the Spectral Stability of Kinks in 2D Klein – Gordon Model with Parity-Time-Symmetric Perturbation”, Stud. Appl. Math., 138:3 (2017), 317–342 | DOI | MR | Zbl

[34] Saadatmand, D. and Javidan, K., “Collective-Coordinate Analysis of Inhomogeneous Nonlinear Klein – Gordon Field Theory”, Braz. J. Phys., 43:1–2 (2013), 48–56 | DOI

[35] Moradi Marjaneh, A., Simas, F. C., and Bazeia, D., “Collisions of Kinks in Deformed $\varphi^4$ and $\varphi^6$ Models”, Chaos Solitons Fractals, 164 (2022), Paper No. 112723, 14 pp. | MR

[36] Ghahraman, A., “Dynamics of $\varphi^4$ Kinks by Using Adomian Decomposition Method”, Am. J. Numer. Anal., 4:1 (2016), 8–10

[37] Lizunova, M. A., Kager, J., de Lange, S., and van Wezel, J., “Kinks and Realistic Impurity Models in $\varphi^4$-Theory”, Int. J. Mod. Phys. B, 36:05 (2022), Art. 2250042, 12 pp. | DOI

[38] Saadatmand, D., Dmitriev, S. V., Borisov, D. I., and Kevrekidis, P. G., “Interaction of Sine-Gordon Kinks and Breathers with a Parity-Time-Symmetric Defect”, Phys. Rev. E, 90:5 (2014), Art. 052902, 10 pp. | DOI | MR

[39] Pis'ma v Zh. Èksper. Teoret. Fiz., 101:7 (2015), 550–555 (Russian) | DOI

[40] Saadatmand, D., Borisov, D. I., Kevrekidis, P. G., Zhou, K., and Dmitriev, S. V., “Resonant Interaction of $\phi^4$ Kink with PT-Symmetric Perturbation with Spatially Periodic Gain/Loss Coefficient”, Commun. Nonlinear Sci. Numer. Simul., 56 (2018), 62–76 | DOI | MR | Zbl

[41] Saadatmand, D., Dmitriev, S. V., Borisov, D. I., Kevrekidis, P. G., Fatykhov, M. A., and Javidan K., “Kink Scattering from a Parity-Time-Symmetric Defect in the $\phi^4$ Model”, Commun. Nonlinear Sci. Numer. Simul., 29:1–3 (2015), 267–282 | DOI | MR | Zbl

[42] Dmitriev, S. V., Suchkov, S. V., Sukhorukov, A. A., and Kivshar, Yu. S., “Scattering of Linear and Nonlinear Waves in a Waveguide Array with a $\mathrm{PT}$-Symmetric Defect”, Phys. Rev. A, 84:1 (2011), Art. 013833, 5 pp. | DOI

[43] Askari, A., Moradi Marjaneh, A., Rakhmatullina, Zh. G., Ebrahimi-Loushab, M., Saadatmand, D., Gani, V. A., Kevrekidis, P. G., and Dmitriev, S. V., “Collision of $\phi^4$ Kinks Free of the Peierls – Nabarro Barrier in the Regime of Strong Discreteness”, Chaos Solitons Fractals, 138 (2020), Art. 109854, 12 pp. | DOI | MR

[44] Dmitriev, S. V., Kevrekidis, P. G., Malomed, B. A., and Frantzeskakis, D. J., “Two-Soliton Collisions in a Near-Integrable Lattice System”, Phys. Rev. E (3), 68:5 (2003), Art. 056603, 7 pp. | DOI | MR

[45] Saadatmand, D., Dmitriev, S. V., and Kevrekidis, P. G., “High Energy Density in Multisoliton Collisions”, Phys. Rev. D, 92:5 (2015), Art. 056005, 11 pp. | DOI | MR

[46] Kevrekidis, P. G. and Weinstein, M. I., “Dynamics of Lattice Kinks”, Phys. D, 142:1–2 (2000), 113–152 | DOI | MR | Zbl

[47] Lizunova, M., Kager, J., de Lange, S., and van Wezel, J., “Emergence of Oscillons in Kink-Impurity Interactions”, J. Phys. A, 54:31 (2021), Paper No. 315701, 9 pp. | DOI | MR

[48] Romańczukiewicz, T. and Shnir, Y., “Oscillons in the Presence of External Potential”, J. High Energ. Phys., 2018:1 (2018), Art. 101, 24 pp. | MR

[49] Dorey, P. and Romańczukiewicz, T., “Resonant Kink – Antikink Scattering through Quasinormal Modes”, Phys. Lett. B, 779 (2018), 117–123 | DOI

[50] Fakhretdinov, M. I., Samsonov, K. Yu., Dmitriev, S. V., and Ekomasov, E. G., “Kink Dynamics in the $\varphi^4$ Model with Extended Impurity”, Russian J. Nonlinear Dyn., 19:3 (2023), 303–320 | MR | Zbl

[51] Piette, B. and Zakrzewski, W. J., “Scattering of Sine-Gordon Kinks on Potential Wells”, J. Phys. A, 40:22 (2007), 5995–6010 | DOI | MR | Zbl

[52] Ekomasov, E. G., Nazarov, V. N., and Samsonov, K. Yu., “Changing the Dynamic Parameters of Localized Breather and Soliton Waves in the sine-Gordon Model with Extended Impurity, External Force, and Decay in the Autoresonance Mode”, Russian J. Nonlinear Dyn., 18:2 (2022), 217–229 | MR | Zbl

[53] Gumerov, A. M., Ekomasov, E. G., Kudryavtsev, R. V., and Fakhretdinov, M. I., “Excitation of Large-Amplitude Localized Nonlinear Waves by the Interaction of Kinks of the Sine-Gordon-Equation with Attracting Impurity”, Russian J. Nonlinear Dyn., 15:1 (2019), 21–34 | MR | Zbl

[54] Schiesser, W. E., The Numerical Method of Lines: Integration of Partial Differential Equations, Acad. Press, Cambridge, Mass., 1991, 326 pp. | MR | Zbl