Design of a Robotic Spherical Wrist with Variable Stiffness
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 599-612.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper discusses the design of an adjustable force compensator for a spherical wrist dedicated to robot milling and incremental sheet metal forming applications. The design of the compensator is modular and can be introduced to any existing manipulator design as a single multi-body auxiliary system connected with simple mechanical transmission mechanisms to the actuators. The paper considers the design of the compensator as an arrangement of elastic springs mounted on moving pivots. The moving pivots are responsible for adjusting the stiffness of the wrist-compensator coupling. Special attention is given to two compensation schemes in which the value of the external force can be known or unknown, respectively. The simulation results show that the analytical derivation of the compensator leads the main actuators to spend zero effort to support the external force.
Keywords: static balancing, manipulator design, variable stiffness
Mots-clés : force compensation
@article{ND_2023_19_4_a9,
     author = {A. A. Demian and A. S. Klimchik},
     title = {Design of a {Robotic} {Spherical} {Wrist} with {Variable} {Stiffness}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {599--612},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_4_a9/}
}
TY  - JOUR
AU  - A. A. Demian
AU  - A. S. Klimchik
TI  - Design of a Robotic Spherical Wrist with Variable Stiffness
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 599
EP  - 612
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_4_a9/
LA  - en
ID  - ND_2023_19_4_a9
ER  - 
%0 Journal Article
%A A. A. Demian
%A A. S. Klimchik
%T Design of a Robotic Spherical Wrist with Variable Stiffness
%J Russian journal of nonlinear dynamics
%D 2023
%P 599-612
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_4_a9/
%G en
%F ND_2023_19_4_a9
A. A. Demian; A. S. Klimchik. Design of a Robotic Spherical Wrist with Variable Stiffness. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 599-612. http://geodesic.mathdoc.fr/item/ND_2023_19_4_a9/

[1] Kim, H.-S. and Song, J.-B., “Multi-DoF Counterbalance Mechanism for a Service Robot Arm”, IEEE/ASME Trans. Mechatronics, 19:6 (2014), 1756–1763 | DOI

[2] Arakelian, V., “Gravity Compensation in Robotics”, Adv. Robot., 30:2 (2015), 79–96 | DOI

[3] Morita, T., Kuribara, F., Shiozawa, Y., and Sugano, S., “A Novel Mechanism Design for Gravity Compensation in Three Dimensional Space”, Proc. 2003 IEEE/ASME Internat. Conf. on Advanced Intelligent Mechatronics (AIM'2003, Kobe, Japan, Jul 2003), Vol. 1, 163–168

[4] Cho, C., Lee, W., Lee, J., and Kang, S., “A $2$-DoF Gravity Compensator with Bevel Gears”, J. Mech. Sci. Technol., 26:9 (2012), 2913–2919 | DOI

[5] Lin, P.-Y., Shieh, W.-B., and Chen, D.-Z., “Design of a Gravity-Balanced General Spatial Serial-Type Manipulator”, J. Mech. Robot., 2:3 (2010), 031003, 7 pp. | DOI

[6] Agrawal, S. K. and Fattah, A., “Gravity-Balancing of Spatial Robotic Manipulators”, Mech. Mach. Theory, 39:12 (2004), 1331–1344 | DOI | MR | Zbl

[7] Lin, P.-Y., Shieh, W.-B., and Chen, D.-Z., “Design of Statically Balanced Planar Articulated Manipulators with Spring Suspension”, IEEE Trans. on Robotics, 28:1 (2012), 12–21 | DOI

[8] Cho, C. and Kang, S., “Design of a Static Balancing Mechanism for a Serial Manipulator with an Unconstrained Joint Space Using One-DoF Gravity Compensators”, IEEE Trans. on Robotics, 30:2 (2014), 421–431 | DOI

[9] Kim, H.-S., Min, J.-K., and Song, J.-B., “Multiple-Degree-of-Freedom Counterbalance Robot Arm Based on Slider-Crank Mechanism and Bevel Gear Units”, IEEE Trans. on Robotics, 32:1 (2016), 230–235 | DOI | MR

[10] Kim, S. H. and Cho, Ch. H., “Static Balancer of a 4-DoF Manipulator with Multi-DoF Gravity Compensators”, J. Mech. Sci. Technol., 31:10 (2017), 4875–4885 | DOI

[11] Chung, D. G., Hwang, M., Won, J., and Kwon, D.-S., “Gravity Compensation Mechanism for Roll-Pitch Rotation of a Robotic Arm”, 2016 IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (IROS, Daejeon, Korea, Oct 2016), 338–343 | Zbl

[12] Jhuang, C.-S., Kao, Y.-Y., and Chen, D.-Z., “Design of One DoF Closed-Loop Statically Balanced Planar Linkage with Link-Collinear Spring Arrangement”, Mech. Mach. Theory, 130 (2018), 301–312 | DOI

[13] Nakayama, T., Araki, Y., and Fujimoto, H., “A New Gravity Compensation Mechanism for Lower Limb Rehabilitation”, Proc. of the Internat. Conf. on Mechatronics and Automation (Changchun, China, Sep 2009), 943–948

[14] Koser, K., “A Cam Mechanism for Gravity-Balancing”, Mech. Res. Commun., 36:4 (2009), 523–530 | DOI | Zbl

[15] Arakelian, V., Dahan, M., and Smith, M., “A Historical Review of the Evolution of the Theory on Balancing of Mechanisms”, Proc. of the Internat. Symp. on History of Machines and Mechanisms (HMM'2000), ed. M. Ceccarelli, Springer, Dordrecht, 2000, 291–300

[16] Gopalswamy, A., Gupta, P., and Vidyasagar, M., “A New Parallelogram Linkage Configuration for Gravity Compensation Using Torsional Springs”, Proc. 1992 IEEE Internat. Conf. on Robotics and Automation (Nice, France, May 1992), Vol. 1, 664–669

[17] Klimchik, A. and Pashkevich, A., “Stiffness Modeling for Gravity Compensators”, Gravity Compensation in Robotics, Mechan. Machine Sci., 115, ed. V. Arakelian, Springer, Cham, 2022, 27–71, viii, 273 pp. | DOI

[18] Klimchik, A., Pashkevich, A., Caro, S., and Furet, B., “Calibration of Industrial Robots with Pneumatic Gravity Compensators”, Proc. of the IEEE Internat. Conf. on Advanced Intelligent Mechatronics (AIM, Munich, Germany, Jul 2017), 285–290

[19] Klimchik, A., Wu, Y., Dumas, C., Caro, S., Furet, B., and Pashkevich, A., “Identification of Geometrical and Elastostatic Parameters of Heavy Industrial Robots”, Proc of the IEEE Internat. Conf. on Robotics and Automation (Karlsruhe, Germany, May 2013), 3707–3714

[20] Kravchenko, A. G., Morozovsky, E. K., Khusainov, A. Yu., and Yarmolovich, R. I., Balanced Manipulator, Patent SU 1813621 A1, May 7, 1993

[21] Vorob'ev, E. I., Popov, S. A., Sheveleva, G. I., and Frolov, K. V., Mechanics of Industrial Robots, v. 1, Kinematics and Dynamics, Vysshaya Shkola, Moscow, 1988, 304 pp. (Russian)

[22] Brown, H. B. and Dolan, J. M., A Novel Gravity Compensation System for Space Robots, Carnegie Mellon Univ., Pittsburgh, Penn., 1994, 9 pp.

[23] Klimchik, A., Caro, S., Wu, Y., Chablat, D., Furet, B., and Pashkevich, A., “Stiffness Modeling of Robotic Manipulator with Gravity Compensator”, Computational Kinematics: Proc. of the 6th Internat. Workshop on Computational Kinematics (CK'2013), Mech. Mach. Sci., 15, eds. F. Thomas, A. Perez Gracia, Springer, Dordrecht, 2014, 161–168

[24] Klimchik, A. and Pashkevich, A., “Robotic Manipulators with Double Encoders: Accuracy Improvement Based on Advanced Stiffness Modeling and Intelligent Control”, IFAC-PapersOnLine, 51:11 (2018), 740–745 | DOI

[25] Klimchik, A., Pashkevich, A., and Chablat, D., “Fundamentals of Manipulator Stiffness Modeling Using Matrix Structural Analysis”, Mech. Mach. Theory, 133 (2019), 365–394 | DOI

[26] Alici, G. and Shirinzadeh, B., “Enhanced Stiffness Modeling, Identification and Characterization for Robot Manipulators”, IEEE Trans. on Robotics, 21:4 (2005), 554–564 | DOI

[27] Chakarov, D., “Study of the Antagonistic Stiffness of Parallel Manipulators with Actuation Redundancy”, Mech. Mach. Theory, 39:6 (2004), 583–601 | DOI | Zbl

[28] Chakarov, D. and Tsveov, M., “Human-Oriented Robots Passive Compliance Adjustment Approach”, Dokl. na BAN, 68:5 (2015), 641–646

[29] Hyun, D., Yang, H. S., Park, J., and Shim, Y., “Variable Stiffness Mechanism for Human-Friendly Robots”, Mech. Mach. Theory, 45:6 (2010), 880–897 | DOI | Zbl

[30] Zappetti, D., Sun, Y., Gevers, M., Mintchev, S., and Floreano, D.,, “Dual Stiffness Tensegrity Platform for Resilient Robotics”, Adv. Intell. Syst., 4:7 (2022), 2200025, 9 pp. | DOI

[31] Kim, B.-S. and Song, J.-B., “Hybrid Dual Actuator Unit: A Design of a Variable Stiffness Actuator Based on an Adjustable Moment Arm Mechanism”, 2010 IEEE Internat. Conf. on Robotics and Automation (Anchorage, AK, USA, Jul 2010), 1655–1660

[32] Demian, A. and Klimchik, A., “External Force Adaptive Compensator for Serial Manipulators”, Proc. of the 19th Internat. Conf. on Informatics in Control, Automation and Robotics (Lisbon, Portugal, Jul 2022), Vol. 1, 500–507

[33] Cen, L. and Melkote, Sh. N., “Effect of Robot Dynamics on the Machining Forces in Robotic Milling”, Procedia Manuf., 10 (2017), 486–496 | DOI

[34] Zheng, L., Li, Y., and Liang, S. Y., “A Generalised Model of Milling Forces”, Int. J. Adv. Manuf. Technol., 14:3 (1998), 160–171 | DOI

[35] Lange, A., Müller, D., Heintz, M., Kirsch, B., and Aurich, J. C., “Modeling of Process-Machine-Interactions in Micro End Milling”, Procedia CIRP, 102 (2021), 512–517 | DOI

[36] Klimchik, A., Ambiehl, A., Garnier, S., Furet, B., and Pashkevich, A., “Efficiency Evaluation of Robots in Machining Applications Using Industrial Performance Measure”, Robot. Comput. Integr. Manuf., 48 (2017), 12–29 | DOI