Optimization Driven Robust Control of Mechanical
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 585-597

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a control algorithm designed to compensate for unknown parameters in mechanical systems, addressing parametric uncertainty in a comprehensive manner. The control optimization process involves two key stages. Firstly, it estimates the narrow uncertainty bounds that satisfy parameter constraints, providing a robust foundation. Subsequently, the algorithm identifies a control strategy that not only ensures uniform boundedness of tracking error but also adheres to drive constraints, effectively minimizing chattering. The proposed control scheme is demonstrated through the modeling of a single rigid body with parameter uncertainties. The algorithm possesses notable strengths such as maximal compensation for parametric uncertainty, chattering reduction, and consideration of control input constraints. However, it is applicable for continuous systems and does not explicitly account for uncertainty in the control input.
Keywords: optimization, sliding mode control, parametric uncertainty, stability
@article{ND_2023_19_4_a8,
     author = {Ch. A. Fam and S. Nedelchev},
     title = {Optimization {Driven} {Robust} {Control} of {Mechanical}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {585--597},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_4_a8/}
}
TY  - JOUR
AU  - Ch. A. Fam
AU  - S. Nedelchev
TI  - Optimization Driven Robust Control of Mechanical
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 585
EP  - 597
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_4_a8/
LA  - en
ID  - ND_2023_19_4_a8
ER  - 
%0 Journal Article
%A Ch. A. Fam
%A S. Nedelchev
%T Optimization Driven Robust Control of Mechanical
%J Russian journal of nonlinear dynamics
%D 2023
%P 585-597
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_4_a8/
%G en
%F ND_2023_19_4_a8
Ch. A. Fam; S. Nedelchev. Optimization Driven Robust Control of Mechanical. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 585-597. http://geodesic.mathdoc.fr/item/ND_2023_19_4_a8/