Optimization Driven Robust Control of Mechanical
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 585-597.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a control algorithm designed to compensate for unknown parameters in mechanical systems, addressing parametric uncertainty in a comprehensive manner. The control optimization process involves two key stages. Firstly, it estimates the narrow uncertainty bounds that satisfy parameter constraints, providing a robust foundation. Subsequently, the algorithm identifies a control strategy that not only ensures uniform boundedness of tracking error but also adheres to drive constraints, effectively minimizing chattering. The proposed control scheme is demonstrated through the modeling of a single rigid body with parameter uncertainties. The algorithm possesses notable strengths such as maximal compensation for parametric uncertainty, chattering reduction, and consideration of control input constraints. However, it is applicable for continuous systems and does not explicitly account for uncertainty in the control input.
Keywords: optimization, sliding mode control, parametric uncertainty, stability
@article{ND_2023_19_4_a8,
     author = {Ch. A. Fam and S. Nedelchev},
     title = {Optimization {Driven} {Robust} {Control} of {Mechanical}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {585--597},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_4_a8/}
}
TY  - JOUR
AU  - Ch. A. Fam
AU  - S. Nedelchev
TI  - Optimization Driven Robust Control of Mechanical
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 585
EP  - 597
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_4_a8/
LA  - en
ID  - ND_2023_19_4_a8
ER  - 
%0 Journal Article
%A Ch. A. Fam
%A S. Nedelchev
%T Optimization Driven Robust Control of Mechanical
%J Russian journal of nonlinear dynamics
%D 2023
%P 585-597
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_4_a8/
%G en
%F ND_2023_19_4_a8
Ch. A. Fam; S. Nedelchev. Optimization Driven Robust Control of Mechanical. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 585-597. http://geodesic.mathdoc.fr/item/ND_2023_19_4_a8/

[1] Yurevich, E. I., Automatic Control Theory, 4th ed., BHV, St. Petersburg, 2016, 560 pp. (Russian)

[2] Kim, D. P., Automatic Control Theory, v. 2, Multidimensional, Nonlinear, Optimal and Adaptive Systems, Fizmatlit, Moscow, 2007, 440 pp. (Russian)

[3] Ames, A. D., Galloway, K., Grizzle, J. W., and Sreenath, K., “Rapidly Exponentially Stabilizing Control Lyapunov Functions and Hybrid Zero Dynamics”, IEEE Trans. Automat. Contr., 59:4 (2014), 876–891 | DOI | Zbl

[4] He, Y. and Han, J., “Control Lyapunov Functions: New Framework for Nonlinear Controller Design”, IFAC Proc. Vol., 41:2 (2008), 14138–14143 | DOI

[5] Spong, M. W., Hutchinson, S., and Vidyasagar, M., Robot Modeling and Control, Wiley, New York, 2005, 496 pp.

[6] Di Carlo, J., Wensing, P. M., Katz, B., Bledt, G., and Kim, S., “Dynamic Locomotion in the MIT Cheetah $3$ through Convex Model-Predictive Control”, 2018 IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (IROS, Madrid, Spain, 2018), 8 pp.

[7] Galloway, K., Sreenath, K., Ames, A. D., and Grizzle, J. W., “Torque Saturation in Bipedal Robotic Walking through Control Lyapunov Function-Based Quadratic Programs”, IEEE Access, 3 (2015), 323–332 | DOI

[8] Spong, M., Thorp, J., and Kleinwaks, J., “The Control of Robot Manipulators with Bounded Input”, IEEE Trans. Automat. Control, 31:6 (1986), 483–490 | DOI | Zbl

[9] Spong, M., “On the Robust Control of Robot Manipulators”, IEEE Trans. Automat. Control, 37:11 (1992), 1782–1786 | DOI | MR | Zbl

[10] Slotine, J.-J. E. and Li, W., “On the Adaptive Control of Robot Manipulators”, Int. J. Rob. Res., 6:3 (1987), 49–59 | DOI

[11] Utkin, V. I., Sliding Modes in Control and Optimization, Translated and revised from the 1981 Russian original, Communications and Control Engineering Series, Springer, Berlin, 1992, xvi, 286 pp. | Zbl

[12] Slotine, J.-J. E. and Li, W., Applied Nonlinear Control, Pearson, New York, 1991, 461 pp.

[13] Avtomat. i Telemekh., 9 (1998), 87–99 (Russian) | Zbl

[14] Quang, L. H., Putov, V. V., and Sheludko, V. N., “Robust Control of Multi Degree-of-Freedom Mechanical Plant with Adaptive Disturbance Compensation”, Proc. of the 23 Internat. Conf. on Soft Computing and Measurements (SCM, St. Petersburg, Russian Federation, May 2020), 289–292 (Russian)

[15] Hayat, R. and Buss, M., “Model Identification for Robot Manipulators Using Regressor-Free Adaptive Control”, Proc. of the 11th Internat. Conf. on Control (UKACC, Belfast, UK, 2016), 7 pp.

[16] Aranovskiy, S., Bobtsov, A., Ortega, R., and Pyrkin, A., “Parameters Estimation via Dynamic Regressor Extension and Mixing”, Proc. of the 2016 American Control Conf. (ACC, Boston, Mass., Jul 2016), 6971–6976

[17] An, C. H., Atkeson, C. G., and Hollerbach, J. M., “Estimation of Inertial Parameters of Rigid Body Links of Manipulators”, Proc. of the 24th IEEE Conference on Decision and Control (Fort Lauderdale, Fla., Dec 1985), 18 pp.

[18] Leitmann, G., “On the Efficacy of Nonlinear Control in Uncertain Liear Systems”, J. Dyn. Syst. Meas. Control, 103:2 (1981), 95–102 | DOI | MR | Zbl

[19] Corless, M. and Leitmann, G., “Continuous State Feedback Guaranteeing Uniform Ultimate Boundedness for Uncertain Dynamic Systems”, IEEE Trans. Automat. Control, 26:5 (1981), 1139–1144 | DOI | MR | Zbl