Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2023_19_4_a5, author = {B. S. Bardin and E. A. Sukhov and E. V. Volkov}, title = {Nonlinear {Orbital} {Stability} of {Periodic} {Motions}}, journal = {Russian journal of nonlinear dynamics}, pages = {545--557}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2023_19_4_a5/} }
TY - JOUR AU - B. S. Bardin AU - E. A. Sukhov AU - E. V. Volkov TI - Nonlinear Orbital Stability of Periodic Motions JO - Russian journal of nonlinear dynamics PY - 2023 SP - 545 EP - 557 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2023_19_4_a5/ LA - en ID - ND_2023_19_4_a5 ER -
B. S. Bardin; E. A. Sukhov; E. V. Volkov. Nonlinear Orbital Stability of Periodic Motions. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 545-557. http://geodesic.mathdoc.fr/item/ND_2023_19_4_a5/
[1] Burgos-García, J. and Delangado, J., “Periodic Orbits in the Restricted Four-Body Problem with Two Equal Masses”, Astrophys. Space Sci., 345:2 (2013), 247–263 | DOI | Zbl
[2] Baltaggianis, A. N. and Papadakis, K. N., “Families of Periodic Orbits in the Restricted Four-Body Problem”, Astrophys. Space Sci., 336:2 (2011), 357–367 | DOI
[3] Papadakis, K. E., “Asymptotic Orbits in the Restricted Four-Body Problem”, Planet. Space Sci., 55:10 (2007), 1368–1379 | DOI
[4] Oshima, K., “Multiple Families of Synodic Resonant Periodic Orbits in the Bicircular Restricted Four-Body Problem”, Adv. Space Res., 70:5 (2022), 1325–1335 | DOI
[5] Álvares-Ramírez, M. and Vidal, C., “Dynamical Aspects of an Equilateral Restricted Four-Body Problem”, Math. Probl. Eng., 2009 (2009), 181360, 23 pp.
[6] Michalodimitrakis, M., “The Circular Restricted Four-Body Problem”, Astrophys. Space Sci., 75:2 (1981), 289–305 | DOI | MR
[7] Howell, K. C. and Spencer, D. B., “Periodic Orbits in the Restricted Four-Body Problem”, Acta Astronaut., 13:8 (1986), 473–479 | DOI | Zbl
[8] Sukhov, E. A. and Volkov, E. V., “Numerical Orbital Stability Analysis of Nonresonant Periodic Motions in the Planar Restricted Four-Body Problem”, Russian J. Nonlinear Dyn., 18:4 (2022), 563–576 | MR
[9] Bardin, B. S., “On the Method of Introduction of Local Variables in a Neighborhood of Periodic Solution of a Hamiltonian System with Two Degrees of Freedom”, Regul. Chaotic Dyn., 28:6 (2023), 878–887 | DOI | MR
[10] Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 39:6 (2004), 3–12 (Russian)
[11] Bardin, B. S. and Volkov, E. V., “Stability Study of a Relative Equilibrium in the Planar Circular Restricted Four-Body Problem”, IOP Conf. Ser.: Mater. Sci. Eng., 927 (2020), 012012, 7 pp. | DOI
[12] Duboshin, G. N., Celestial Mechanics: Basic Problems and Methods, Nauka, Moscow, 1968, 800 pp. (Russian) | Zbl
[13] Routh, E. J., “On Laplace's Three Particles with a Supplement on the Stability or Their Motion”, Proc. London Math. Soc., 6:1 (1875), 86–97 | DOI
[14] Bardin, B. S. and Volkov, E. V., “Analysis of Linear Stability and Bifurcations of Central Configurations in the Planar Restricted Circular Four-Body Problem”, IOP Conf. Ser.: Mater. Sci. Eng., 1191 (2021), 012002, 8 pp. | DOI
[15] Bardin, B. S. and Volkov, E. V., “On Bifurcations and Stability of Central Configurations in the Planar Circular Restricted Four-Body Problem”, J. Phys. Conf. Ser., 1959 (2021), 012006, 8 pp. | DOI
[16] Lyapunov, A. M., The General Problem of the Stability of Motion, Fracis Taylor, London, 1992, x, 270 pp. | Zbl
[17] Malkin, I. G., Theory of Stability of Motion, United States Atomic Energy Commission, Washington, D.C., 1959, 589 pp.
[18] Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 1996, no. 2, 37–54 (Russian)
[19] Deprit, A. and Henrard, J., “Natural Families of Periodic Orbits”, Astron. J., 72:2 (1967), 158–172 | DOI
[20] Karimov, S. R. and Sokolskiy, A. G., Method of Numerical Continuation of Natural Families of Periodic Motions of Hamiltonian Systems, Preprint No. 9, Institute of Theoretical Astronomy of the Academy of Sciences of the USSR, Moscow, 1990, 32 pp. (Russian)
[21] Sukhov, E. A., “On Numerical Bifurcation Analysis of Periodic Motions of Autonomous Hamiltonian Systems with Two Degrees of Freedom”, J. Phys. Conf. Ser., 1959 (2021), 012048, 8 pp. | DOI