The Problem of the Rolling Motion
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 533-543

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper investigates the problem of a sphere with axisymmetric mass distribution rolling on a horizontal plane. It is assumed that the sphere can slip in the direction of the projection of the symmetry axis onto the supporting plane. Equations of motion are obtained and their first integrals are found. It is shown that in the general case the system considered is nonintegrable and does not admit an invariant measure with smooth positive density. Some particular cases of the existence of an additional integral of motion are found and analyzed. In addition, the limiting case in which the system is integrable by the Euler – Jacobi theorem is established.
Keywords: nonholonomic constraint, first integral, nonintegrability
Mots-clés : Poincaré map
@article{ND_2023_19_4_a4,
     author = {A. A. Kilin and T. B. Ivanova},
     title = {The {Problem} of the {Rolling} {Motion}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {533--543},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_4_a4/}
}
TY  - JOUR
AU  - A. A. Kilin
AU  - T. B. Ivanova
TI  - The Problem of the Rolling Motion
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 533
EP  - 543
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_4_a4/
LA  - en
ID  - ND_2023_19_4_a4
ER  - 
%0 Journal Article
%A A. A. Kilin
%A T. B. Ivanova
%T The Problem of the Rolling Motion
%J Russian journal of nonlinear dynamics
%D 2023
%P 533-543
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_4_a4/
%G en
%F ND_2023_19_4_a4
A. A. Kilin; T. B. Ivanova. The Problem of the Rolling Motion. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 533-543. http://geodesic.mathdoc.fr/item/ND_2023_19_4_a4/