The Problem of the Rolling Motion
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 533-543.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper investigates the problem of a sphere with axisymmetric mass distribution rolling on a horizontal plane. It is assumed that the sphere can slip in the direction of the projection of the symmetry axis onto the supporting plane. Equations of motion are obtained and their first integrals are found. It is shown that in the general case the system considered is nonintegrable and does not admit an invariant measure with smooth positive density. Some particular cases of the existence of an additional integral of motion are found and analyzed. In addition, the limiting case in which the system is integrable by the Euler – Jacobi theorem is established.
Keywords: nonholonomic constraint, first integral, nonintegrability
Mots-clés : Poincaré map
@article{ND_2023_19_4_a4,
     author = {A. A. Kilin and T. B. Ivanova},
     title = {The {Problem} of the {Rolling} {Motion}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {533--543},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_4_a4/}
}
TY  - JOUR
AU  - A. A. Kilin
AU  - T. B. Ivanova
TI  - The Problem of the Rolling Motion
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 533
EP  - 543
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_4_a4/
LA  - en
ID  - ND_2023_19_4_a4
ER  - 
%0 Journal Article
%A A. A. Kilin
%A T. B. Ivanova
%T The Problem of the Rolling Motion
%J Russian journal of nonlinear dynamics
%D 2023
%P 533-543
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_4_a4/
%G en
%F ND_2023_19_4_a4
A. A. Kilin; T. B. Ivanova. The Problem of the Rolling Motion. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 533-543. http://geodesic.mathdoc.fr/item/ND_2023_19_4_a4/

[1] Prikl. Mat. Mekh., 42:1 (1978), 28–33 (Russian) | DOI | MR

[2] Izv. Akad. Nauk. Mekh. Tverd. Tela, 1 (1997), 7–13 (Russian)

[3] Kholmskaya, A. G., “Motion of a Disk within a Sphere”, Regul. Chaotic Dyn., 3:2 (1998), 74–81 | DOI | MR | Zbl

[4] Markeev, A. P., “On Stationary Motions of the Disk on Smooth Horizontal Ice”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1986, no. 4, 16–20 (Russian)

[5] Kilin, A. A. and Ivanova, T. B., “The Integrable Problem of the Rolling Motion of a Dynamically Symmetric Spherical Top with One Nonholonomic Constraint”, Russian J. Nonlinear Dyn., 19:1 (2023), 3–17 | MR | Zbl

[6] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “The Dynamics of Nonholonomic Systems Consisting of a Spherical Shell with a Moving Rigid Body Inside”, Regul. Chaotic Dyn., 19:2 (2014), 198–213 | DOI | MR | Zbl

[7] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “Different Models of Rolling for a Robot Ball on a Plane As a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582 | DOI | MR | Zbl

[8] Kilin, A. A. and Pivovarova, E. N., “Dynamics of an Unbalanced Disk with a Single Nonholonomic Constraint”, Regul. Chaotic Dyn., 28:1 (2023), 78–106 | DOI | MR | Zbl

[9] Kilin, A. A. and Pivovarova, E. N., “The Influence of the First Integrals and the Rolling Resistance Model on Tippe Top Inversion”, Nonlinear Dyn., 103:1 (2021), 419–428 | DOI | Zbl

[10] Ciocci, M. C., Malengier, B., Langerock, B., and Grimonprez, B., “Towards a Prototype of a Spherical Tippe Top”, J. Appl. Math., 2012 (2012), 268537, 34 pp. | DOI | MR | Zbl

[11] Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 3 (2008), 33–41 (Russian) | DOI

[12] Rauch-Wojciechowski, S., Sköldstam, M., and Glad, T., “Mathematical Analysis of the Tippe Top”, Regul. Chaotic Dyn., 10:4 (2005), 333–362 | DOI | MR | Zbl

[13] Arnol'd, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, xiv, 518 pp. | DOI | Zbl

[14] Borisov, A. V. and Mamaev, I. S., “Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR | Zbl

[15] Borisov, A. V. and Mamaev, I. S., “Symmetries and Reduction in Nonholonomic Mechanics”, Regul. Chaotic Dyn., 20:5 (2015), 553–604 | DOI | MR | Zbl

[16] Jellett, J. H., A Treatise on the Theory on Friction, MacMillan, London, 1872, 220 pp.

[17] Borisov, A. V. and Mamaev, I. S., “The Rolling Motion of a Rigid Body on a Plane and a Sphere: Hierarchy of Dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl

[18] Borisov, A. V., Mamaev, I. S., and Kilin, A. A., “Dynamics of Rolling Disk”, Regul. Chaotic Dyn., 8:2 (2003), 201–212 | DOI | MR | Zbl

[19] Prikl. Mat. Mekh., 51:4 (1987), 538–545 (Russian) | DOI | MR | Zbl

[20] Kozlov, V. V., “On the Theory of Integration of the Equations of Nonholonomic Mechanics”, Uspekhi Mekh., 8:3 (1985), 85–107 (Russian)