Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2023_19_4_a4, author = {A. A. Kilin and T. B. Ivanova}, title = {The {Problem} of the {Rolling} {Motion}}, journal = {Russian journal of nonlinear dynamics}, pages = {533--543}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2023_19_4_a4/} }
A. A. Kilin; T. B. Ivanova. The Problem of the Rolling Motion. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 533-543. http://geodesic.mathdoc.fr/item/ND_2023_19_4_a4/
[1] Prikl. Mat. Mekh., 42:1 (1978), 28–33 (Russian) | DOI | MR
[2] Izv. Akad. Nauk. Mekh. Tverd. Tela, 1 (1997), 7–13 (Russian)
[3] Kholmskaya, A. G., “Motion of a Disk within a Sphere”, Regul. Chaotic Dyn., 3:2 (1998), 74–81 | DOI | MR | Zbl
[4] Markeev, A. P., “On Stationary Motions of the Disk on Smooth Horizontal Ice”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1986, no. 4, 16–20 (Russian)
[5] Kilin, A. A. and Ivanova, T. B., “The Integrable Problem of the Rolling Motion of a Dynamically Symmetric Spherical Top with One Nonholonomic Constraint”, Russian J. Nonlinear Dyn., 19:1 (2023), 3–17 | MR | Zbl
[6] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “The Dynamics of Nonholonomic Systems Consisting of a Spherical Shell with a Moving Rigid Body Inside”, Regul. Chaotic Dyn., 19:2 (2014), 198–213 | DOI | MR | Zbl
[7] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “Different Models of Rolling for a Robot Ball on a Plane As a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582 | DOI | MR | Zbl
[8] Kilin, A. A. and Pivovarova, E. N., “Dynamics of an Unbalanced Disk with a Single Nonholonomic Constraint”, Regul. Chaotic Dyn., 28:1 (2023), 78–106 | DOI | MR | Zbl
[9] Kilin, A. A. and Pivovarova, E. N., “The Influence of the First Integrals and the Rolling Resistance Model on Tippe Top Inversion”, Nonlinear Dyn., 103:1 (2021), 419–428 | DOI | Zbl
[10] Ciocci, M. C., Malengier, B., Langerock, B., and Grimonprez, B., “Towards a Prototype of a Spherical Tippe Top”, J. Appl. Math., 2012 (2012), 268537, 34 pp. | DOI | MR | Zbl
[11] Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 3 (2008), 33–41 (Russian) | DOI
[12] Rauch-Wojciechowski, S., Sköldstam, M., and Glad, T., “Mathematical Analysis of the Tippe Top”, Regul. Chaotic Dyn., 10:4 (2005), 333–362 | DOI | MR | Zbl
[13] Arnol'd, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, xiv, 518 pp. | DOI | Zbl
[14] Borisov, A. V. and Mamaev, I. S., “Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR | Zbl
[15] Borisov, A. V. and Mamaev, I. S., “Symmetries and Reduction in Nonholonomic Mechanics”, Regul. Chaotic Dyn., 20:5 (2015), 553–604 | DOI | MR | Zbl
[16] Jellett, J. H., A Treatise on the Theory on Friction, MacMillan, London, 1872, 220 pp.
[17] Borisov, A. V. and Mamaev, I. S., “The Rolling Motion of a Rigid Body on a Plane and a Sphere: Hierarchy of Dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl
[18] Borisov, A. V., Mamaev, I. S., and Kilin, A. A., “Dynamics of Rolling Disk”, Regul. Chaotic Dyn., 8:2 (2003), 201–212 | DOI | MR | Zbl
[19] Prikl. Mat. Mekh., 51:4 (1987), 538–545 (Russian) | DOI | MR | Zbl
[20] Kozlov, V. V., “On the Theory of Integration of the Equations of Nonholonomic Mechanics”, Uspekhi Mekh., 8:3 (1985), 85–107 (Russian)