Enhanced Adaptive Control over Robotic Systems via
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 633-646.

Voir la notice de l'article provenant de la source Math-Net.Ru

Adaptive control and parameter estimation have been widely employed in robotics to deal with parametric uncertainty. However, these techniques may suffer from parameter drift, depen- dence on acceleration estimates and conservative requirements for system excitation. To over- come these limitations, composite adaptation laws can be used. In this paper, we propose an enhanced composite adaptive control approach for robotic systems that exploits the acceleration- free momentum dynamics and regressor extensions to offer faster parameter and tracking con- vergence while relaxing excitation conditions and providing a clear physical interpretation. The effectiveness of the proposed approach is validated through experimental evaluation on a 3-DoF robotic leg.
Keywords: adaptive control, parameter estimation, motion control
@article{ND_2023_19_4_a11,
     author = {S. Nedelchev and L. Kozlov and R. Khusainov and I. Gaponov},
     title = {Enhanced {Adaptive} {Control} over {Robotic} {Systems} via},
     journal = {Russian journal of nonlinear dynamics},
     pages = {633--646},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_4_a11/}
}
TY  - JOUR
AU  - S. Nedelchev
AU  - L. Kozlov
AU  - R. Khusainov
AU  - I. Gaponov
TI  - Enhanced Adaptive Control over Robotic Systems via
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 633
EP  - 646
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_4_a11/
LA  - en
ID  - ND_2023_19_4_a11
ER  - 
%0 Journal Article
%A S. Nedelchev
%A L. Kozlov
%A R. Khusainov
%A I. Gaponov
%T Enhanced Adaptive Control over Robotic Systems via
%J Russian journal of nonlinear dynamics
%D 2023
%P 633-646
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_4_a11/
%G en
%F ND_2023_19_4_a11
S. Nedelchev; L. Kozlov; R. Khusainov; I. Gaponov. Enhanced Adaptive Control over Robotic Systems via. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 633-646. http://geodesic.mathdoc.fr/item/ND_2023_19_4_a11/

[1] Prufer, M., Schmidt, C., and Wahl, F., “Identification of Robot Dynamics with Differential and Integral Models: A Comparison”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (San Diego, Calif., USA, 1994), Vol. 1, 340–345

[2] Annaswamy, A. M. and Fradkov, A. L., “A Historical Perspective of Adaptive Control and Learning”, Annu. Rev. Control, 52 (2021), 18–41 | DOI | MR

[3] Li, W. and Slotine, J.-J. E., “On-Line Parameter Estimation for Robot Manipulators”, Proc. of the IEEE Internat. Conf. on Systems, Man, and Cybernetics (Beijing, China, Aug 1988), 353–356

[4] Gautier, M. and Khalil, W., “On the Identification of the Inertial Parameters of Robots”, Proc. of the 27th IEEE Conf. on Decision and Control (Austin, Tex., USA, 1988), Vol. 3, 2264–2269

[5] Gautier, M., “A Comparison of Filtered Models for Dynamic Identification of Robots”, Proc. of the 35th IEEE Conf. on Decision and Control (Kobe, Japan, Dec 1996), Vol. 1, 875–880

[6] De Luca, A. and Mattone, R., “Actuator Failure Detection and Isolation Using Generalized Momenta”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (Taipei, Taiwan, Sep 2003), Vol. 1, 634–639 (Cat. No. 03CH37422) | Zbl

[7] Garofalo, G., Mansfeld, N., Jankowski, J., and Ott, Ch., “Sliding Mode Momentum Observers for Estimation of External Torques and Joint Acceleration”, Proc. of the Internat. Conf. on Robotics and Automation (ICRA, Montreal, QC, Canada, May 2019), 6117–6123

[8] Le Tien, L., Albu-Schaffer, A., De Luca, A., and Hirzinger, G., “Friction Observer and Compensation for Control of Robots with Joint Torque Measurement”, Proc. of the IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (Nice, France, Sep 2008), 3789–3795

[9] Parikh, A., Kamalapurkar, R., and Dixon, W. E., “Integral Concurrent Learning: Adaptive Control with Parameter Convergence Using Finite Excitation”, Int. J. Adapt. Control Signal Process., 33:12 (2019), 1775–1787 | DOI | Zbl

[10] Isaly, A., Patil, O. S., Sanfelice, R. G., and Dixon, W. E., “Adaptive Safety with Multiple Barrier Functions Using Integral Concurrent Learning”, American Control Conf. (ACC, New Orleans, La., USA, May 2021), 3719–3724

[11] Slotine, J.-J. E. and Li, W., “Composite Adaptive Control of Robot Manipulators”, Automatica J. IFAC, 25:4 (1989), 509–519 | DOI | MR | Zbl

[12] Slotine, J.-J. E. and Li, W., Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, N.J., 1991, 461 pp. | Zbl

[13] Kreisselmeier, G., “Adaptive Observers with Exponential Rate of Convergence”, IEEE Trans. Autom. Control, 22:1 (1977), 2–8 | DOI | MR | Zbl

[14] Gerasimov, D. and Nikiforov, V., “On Key Properties of the Lion's and Kreisselmeier's Adaptation Algorithms”, IFAC-PapersOnLine, 53:2 (2020), 3773–3778 | DOI

[15] Lion, P. M., “Rapid Identification of Linear and Nonlinear Systems”, AIAA J., 5:10 (1967), 1835–1842 | DOI

[16] Shao, X., Hu, Q., Li, D., Shi, Y., and Yi, B., “Composite Adaptive Control for Anti-Unwinding Attitude Maneuvers: An Exponential Stability Result without Persistent Excitation”, IEEE Trans. Aerosp. Electron. Syst., 59:2 (2022), 1051–1066

[17] Slotine, J.-J. E. and Li, W., “On the Adaptive Control of Robot Manipulators”, Int. J. Rob. Res., 6:3 (1987), 49–59 | DOI

[18] An, Ch. H., Atkeson, Ch. G., and Hollerbach, J. M., “Estimation of Inertial Parameters of Rigid Body Links of Manipulators”, Proc. of the 24th IEEE Conf. on Decision and Control (Fort Lauderdale, Fla., USA, Dec 1985), 990–995

[19] Craig, J., Hsu, P., and Sastry, S., “Adaptive Control of Mechanical Manipulators”, Int. J. Rob. Res., 6:2 (1987), 16–28 | DOI

[20] Gautier, M., “Dynamic Identification of Robots with Power Model”, Proc. of the Internat. Conf. on Robotics and Automation (Albuquerque, N.M., USA, Apr 1997), Vol. 3, 1922–1927

[21] Gautier, M., “A Comparison of Filtered Models for Dynamic Identification of Robots”, Proc. of the 35th IEEE Conf. on Decision and Control (Kobe, Japan, Dec 1996), Vol. 1, 875–880

[22] Chowdhary, G. and Johnson, E., “Concurrent Learning for Convergence in Adaptive Control without Persistency of Excitation”, Proc. of the 49th IEEE Conf. on Decision and Control (CDC, Atlanta, Ga., USA, Dec 2010), 3674–3679

[23] Pan, Y. and Yu, H., “Composite Learning from Adaptive Dynamic Surface Control”, IEEE Trans. Autom. Control, 61:9 (2016), 2603–2609 | DOI | Zbl

[24] Khalil, W. and Dombre, E., Modeling, Identification and Control of Robots, CRC, Boca Raton, Fla., 2002, 480 pp.

[25] Hsu, P., Sastry, S., Bodson, M., and Paden, B., “Adaptive Identification and Control for Manipulators without Using Joint Accelerations,”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (Raleigh, N.C., USA), Vol. 4, 1210–1215

[26] Gerasimov, D. N., Nikiforov, V. O., and Belyaev, M. E., “Performance Improvement of MRAC by Dynamic Regressor Extension”, Proc. of the IEEE Conf. on Decision and Control (CDC, Miami, Fla., USA, Dec 2018), 3032–3037

[27] Gerasimov, D. N. and Nikiforov, V. O., “Augmented Error Based Adaptive Control with Improved Parametric Convergence”, IFAC-PapersOnLine, 55:12 (2022), 67–78 | DOI

[28] Yi, B. and Ortega, R., “Conditions for Convergence of Dynamic Regressor Extension and Mixing Parameter Estimators Using LTI Filters”, IEEE Trans. Automat. Control, 68:2 (2023), 1253–1258 | DOI | MR

[29] Ortega, R., Nikiforov, V., and Gerasimov, D., “On Modified Parameter Estimators for Identification and Adaptive Control. A Unified Framework and Some New Schemes”, Annu. Rev. Control, 50 (2020), 278–293 | DOI | MR

[30] Astolfi, A., Karagiannis, D., and Ortega, R., Nonlinear and Adaptive Control with Applications, Communications and Control Engineering Series, Springer, London, 2008, xvi, 290 pp. | DOI | Zbl

[31] Chowdhary, G., Yucelen, T., Mühlegg, M., and Johnson, E. N., “Concurrent Learning Adaptive Control of Linear Systems with Exponentially Convergent Bounds”, Internat. J. Adapt. Control Signal Process., 27:4 (2013), 280–301 | DOI | MR | Zbl

[32] Lavretsky, E. Combined/Composite Model Reference Adaptive Control, IEEE Trans. Automat. Control, 54:11 (2009), 2692–2697 | DOI | MR | Zbl

[33] Cohen, M. H. and Belta, C., “Modular Adaptive Safety-Critical Control”, Proc. of the American Control Conf. (ACC, San Diego, Calif., USA, 2023), 2969–2974

[34] Zhang, Z., Liu, F., Liu, T., Qiu, J., and Buss, M., “A Persistent-Excitation-Free Method for System Disturbance Estimation Using Concurrent Learning”, IEEE Trans. Circuits Syst. I Regul. Pap., 70:8 (2023), 3305–3315 | DOI

[35] Hu, Q., Shao, X., and Guo, L., “Composite Learning Pose Control of Spacecraft with Guaranteed Parameter Convergence”, Intelligent Autonomous Control of Spacecraft with Multiple Constraints, Springer, Singapore, 2023, 267–296

[36] Carpentier, J., Saurel, G., Buondonno, G., Mirabel, J., Lamiraux, F., Stasse, O., and Mansard, N., “The Pinocchio $C++$ Library: A Fast and Flexible Implementation of Rigid Body Dynamics Algorithms and Their Analytical Derivatives”, Proc. of the IEEE/SICE Internat. Symp. on System Integration (SII, Paris, France, 2019), 614–619

[37] Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., and Diehl, M., “CasADi: A Software Framework for Nonlinear Optimization and Optimal Control”, Math. Prog. Comp., 11:1 (2019), 1–36 | DOI | Zbl