Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2023_19_4_a10, author = {E. A. Marchuk and A. Al Badr and Ya. V. Kalinin and A. V. Maloletov}, title = {Cable-Driven {Parallel} {Robot:} {Distribution} of {Tension}}, journal = {Russian journal of nonlinear dynamics}, pages = {613--631}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2023_19_4_a10/} }
TY - JOUR AU - E. A. Marchuk AU - A. Al Badr AU - Ya. V. Kalinin AU - A. V. Maloletov TI - Cable-Driven Parallel Robot: Distribution of Tension JO - Russian journal of nonlinear dynamics PY - 2023 SP - 613 EP - 631 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2023_19_4_a10/ LA - en ID - ND_2023_19_4_a10 ER -
%0 Journal Article %A E. A. Marchuk %A A. Al Badr %A Ya. V. Kalinin %A A. V. Maloletov %T Cable-Driven Parallel Robot: Distribution of Tension %J Russian journal of nonlinear dynamics %D 2023 %P 613-631 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2023_19_4_a10/ %G en %F ND_2023_19_4_a10
E. A. Marchuk; A. Al Badr; Ya. V. Kalinin; A. V. Maloletov. Cable-Driven Parallel Robot: Distribution of Tension. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 613-631. http://geodesic.mathdoc.fr/item/ND_2023_19_4_a10/
[1] Samset, I., “The History of Rope Transportation”, Winch and Cable Systems, Forestry Sci., 18, Springer, Dordrecht, 1985, 23–54, x, 534 pp. | DOI
[2] An Encyclopaedia of the History of Technology, ed. I. McNeil, Routledge, London, 1996, 1084 pp.
[3] Kim, P. W., “Scientific Disciplines of Geojunggi (the Traditional Crane) in Korean Science, Technology and History Class”, Eurasia J. Math. Sci. Technol. Educ., 13:9 (2017), 6147–6163 | DOI
[4] Landsberger, S. E., Design and Construction of a Cable-Controlled, Parallel Link Manipulator, Master's Thesis, Massachusetts Institute of Technology, Cambridge, Mass., 1984, 123 pp.
[5] Albus, J. S., Cable Arrangement and Lifting Platform for Stabilized Load Lifting, Patent US No 4,883,184, Nov 28, 1989
[6] Tho, T. P. and Thinh, N. T., “Using a Cable-Driven Parallel Robot with Applications in 3D Concrete Printing”, Appl. Sci., 11:2 (2021), 563, 23 pp. | DOI
[7] Zi, B. and Qian, S., Design, Analysis and Control of Cable-Suspended Parallel Robots and Its Applications, Springer, Singapore, 2017, xii, 299 pp.
[8] Pott, A., Cable-Driven Parallel Robots: Theory and Application, Springer, Cham, 2018, xxiv, 465 pp.
[9] Morris, M. and Shoham, M., “Applications and Theoretical Issues of Cable-Driven Robots”, 2009 Florida Conf. on Recent Advances in Robotics (Boca Raton, Fla., 2009), 29 pp.
[10] Tho, T. P. and Thinh, N. T., “An Overview of Cable-Driven Parallel Robots: Workspace, Tension Distribution, and Cable Sagging”, Math. Probl. Eng., 2022 (2022), 2199748, 15 pp. | DOI
[11] Zhang, Z., Shao, Z., You, Z., Tang, X., Zi, B., Yang, G., Gosselin, C., and Caro, S., “State-of-the-Art on Theories and Applications of Cable-Driven Parallel Robots”, Front. Mech. Eng., 17:3 (2022), 37, 23 pp. | DOI | MR | Zbl
[12] von Neumann, J. and Morgenstern, O., Theory of Games and Economic Behavior, Princeton Univ. Press, Princeton, N.J., 1944, xviii, 625 pp. | Zbl
[13] Zadeh, L. A., “Fuzzy Sets”, Inform. Control, 8:3 (1965), 338–353 | DOI | Zbl
[14] Fedin, A. P., Kalinin, Ya. V., and Marchuk, E. A., “ANN and Elements of Differentional Games in the Model of Regulated Wheel Slippage Process in a Braking Mode”, Proc. of the Internat. Conf. “Nonlinearity, Information and Robotics” (Innopolis, Russia, Dec 2020), 4 pp.
[15] Zhang, J.-F., “Challenges and Opportunities Facing Game Theory and Control: An Interview with Tamer Başar”, Natl. Sci. Rev., 7:7 (2020), 1142–1146 | DOI
[16] Wu, J., Wu, D., Yan, Y., Zhang, N., Bao, C., Wang, F., “Steering and Braking Game Control Architecture Based Minimax Robust Stability Control for Emergency Avoidance of Autonomous Vehicles”, Sci. China Technol. Sci., 65:4 (2022), 943–955 | DOI
[17] Isaacs, R., Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization, Wiley, New York, 1965, xvii, 384 pp. | Zbl
[18] Bauso, D., Game Theory with Engineering Applications, SIAM Series: Advances in Design and Control, SIAM, Philadelphia, Pa., 2016, 320 pp. | Zbl
[19] Marden, J. R. and Shamma, J. S., “Game-Theoretic Learning in Distributed Control”, Handbook of Dynamic Game Theory, eds. T. Başar, G. Zaccour, Springer, Cham, 2018, 511–546, 1285 pp.
[20] Rao, S. S., “Game Theory Approach for Multiobjective Structural Optimization”, Comput. Struct., 25:1 (1987), 119–127 | DOI | Zbl
[21] Jang, J.-S. R., “ANFIS: Adaptive-Network-Based Fuzzy Inference System”, IEEE Trans. Syst. Man Cybern., 23:3 (1993), 665–685 | DOI
[22] Reznik, L., Fuzzy Controllers, Newnes/Elsevier, Burlington, Mass., 1997, 307 pp.
[23] Ross, T. J., Fuzzy Logic with Engineering Applications, 3rd ed., Wiley, New York, 2010, 606 pp.
[24] Piegat, A., Fuzzy Modeling and Control, Stud. Fuzziness Soft Comput., 69, Springer, Berlin, 2001, xiv, 728 pp. | DOI
[25] Haykin, S., Neural Networks and Learning Machines, 3rd ed., Pearson, New York, 2016, 944 pp.
[26] Desouky, S. F. and Schwartz, H. M., “Self-Learning Fuzzy Logic Controllers for Pursuit-Evasion Differential Games”, Robot. Auton. Syst., 59:1 (2011), 22–33 | DOI
[27] Pickering, L. and Cohen, K., “Genetic Fuzzy Controller for the Homicidal Chauffeur Differential Game”, Applications of Fuzzy Techniques: North American Fuzzy Information Processing Society Annual Conference (NAFIPS, Halifax, NS, Canada, 2022), Lect. Notes Netw. Syst., 500, eds. S. Dick, V. Kreinovich, P. Lingras, Springer, Cham, 2023, 196–204 | DOI
[28] Amiri, R., Moussavi, S. Z., and Hamedi, J., “Neuro-Fuzzy Intelligent Control Algorithm for Cable-Driven Robots with Elastic Cables”, Proc. of the Internat. Symp. on Computer Science and Intelligent Controls (ISCSIC, Budapest, Hungary, 2017), 57–62
[29] Aguas, X. I., Cuaycal, A., Paredes, I., and Herrera, M., “A Fuzzy Sliding Mode Controller for Planar $4$-Cable Direct Driven Robot”, Enfoque UTE, 9:4 (2018), 99–109 | DOI
[30] Tho, T. P. and Thinh, N. T., “Sagging Cable Analysis and Evaluation of $4$-Degree-of-Freedom Cable Robot Using Adaptive Neural Fuzzy Algorithm”, Int. J. Mech. Eng. Robot. Res., 11:2 (2022), 73–78 | DOI
[31] Hendrycks, D. and Gimpel, K., Gaussian Error Linear Units (GELUs), , 2016, 10 pp. abs/1606.08415 [cs.LG]
[32] Marchuk, E. A. and Kalinin, Ya. V., “Specifity of Including of Structural Nonlinearity in Model of Dynamics of Cable-Driven Robot”, Mekhatronika, Avtomatizatsiya, Upravlenie, 22:10 (2021), 547–552 (Russian) | DOI
[33] Mathews, J. H. and Fink, K. D., Numerical Methods Using MATLAB, 4th ed., Pearson, New York, 2003, 696 pp.
[34] Esfandiari, R. S. and Lu, B., Modeling and Analysis of Dynamic Systems, 3rd ed., CRC, Boca Raton, Fla., 2018
[35] Irvine, M., Cable Structures, Dover, New York, 1992, 259 pp.
[36] Marchuk, E. A., Kalinin, Ya. V., Ivanou, M. A., and Maloletov, A. V., “On Mathematical Modeling of Sagging Elements of Large-Sized Parallel Cable-Driven Robot”, Izv. Volgogradsk. Gos. Tekhn. Univ., 2022, no. 9(268), 56–62 (Russian)
[37] Marchuk, E. A., Kalinin, Ya. V., Sidorova, A. V., and Maloletov, A. V., “On the Problem of Position and Orientation Errors of a Large-Sized Cable-Driven Parallel Robot”, Russian J. Nonlinear Dyn., 18:5 (2022), 745–760 | MR
[38] Marchuk, E. A. and Sharonov, N. G., “Problem of Tension Distribution in a System of Cable-Driven Parallel Robot: Game Theory Formalization”, Izv. Volgogradsk. Gos. Tekhn. Univ., 2023, no. 9(280), 51–59 (Russian)
[39] Marchuk, E. A., Kalinin, Ya. V., and Maloletov, A. V., “Error Compensation in Position and Orientation of Mobile Platform of Cable-Driven Robots via Tensile Forces Measurement”, Mekhatronika, Avtomatizatsiya, Upravlenie, 23:10 (2022), 515–522 | DOI
[40] De Luca, A., Robots with Kinematic Redundancy, Sapienza Universitá di Roma, 2016, 48 pp.
[41] McCain, R. A., Game Theory: A Nontechnical Introduction to the Analysis of Strategy, 3rd ed., World Sci., River Edge, N.J., 2014, 600 pp. | Zbl
[42] Russell, S. J. and Norvig, P., Artificial Intelligence: A Modern Approach, 3rd ed., Prentice Hall, Upper Saddle River, N.J., 2009, 1152 pp.
[43] Marchuk, E. A., Mikhailov, A. S., Kalinin, Ya. V., and Maloletov, A. V., “On the Problem of Tension Forces Distribution in Cable System of Cable-Driven Parallel Robot”, Mekhatronika, Avtomatizatsiya, Upravlenie, 24:12 (2023), 643–651 | DOI
[44] Kosko, B., “Fuzzy Systems As Universal Approximators”, IEEE Trans. Comput., 43:11 (1994), 1329–1333 | DOI | Zbl
[45] Hornik, K., Stinchcombe, M., and White, H., “Multilayer Feedforward Networks Are Universal Approximators”, Neural Netw., 2:5 (1989), 359–366 | DOI | Zbl
[46] Frantz, M., “Save This Family! An Instructive Sequence of Curves”, Math. Mag., 91:4 (2018), 267–273 | DOI | MR | Zbl
[47] Marchuk, E., Kalinin, Ya., and Maloletov, A., “On Smooth Planar Curvilinear Motion of Cable-Driven Parallel Robot End-Effector”, IFAC-PapersOnLine, 55:10 (2022), 2475–2480 | DOI