Complete Description of Bounded Solutions for a Duffing-Type Equation with a Periodic Piecewise Constant Coefficient
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 473-506
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the equation $u_{xx}^{}-u+W(x)u^3=0$ where $W(x)$ is a periodic alternating piecewise constant function. It is proved that under certain conditions for $W(x)$ solutions of this equation, which are bounded on $\mathbb{R}$, $|u(x)|\xi$, can be put in one-to-one correspondence with bi-infinite sequences of numbers $n\in \{-N,\,\ldots,\,N\}$ (called “codes” of the solutions). The number $N$ depends on the bounding constant $\xi$ and the characteristics of the function $W(x)$. The proof makes use of the fact that, if $W(x)$ changes sign, then a “great part” of the solutions are singular, i.e., they tend to infinity at a finite point of the real axis. The nonsingular solutions correspond to a fractal set of initial data for the Cauchy problem in the plane $(u,\,u_x^{})$. They can be described in terms of symbolic dynamics conjugated with the map-over-period (monodromy operator) for this equation. Finally, we describe an algorithm that allows one to sketch plots of solutions by its codes.
Keywords:
Duffing-type equation, periodic coefficients, symbolic dynamics, Smale horseshoe
@article{ND_2023_19_4_a1,
author = {G. L. Alfimov and M. E. Lebedev},
title = {Complete {Description} of {Bounded} {Solutions} for a {Duffing-Type} {Equation} with a {Periodic} {Piecewise} {Constant} {Coefficient}},
journal = {Russian journal of nonlinear dynamics},
pages = {473--506},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ND_2023_19_4_a1/}
}
TY - JOUR AU - G. L. Alfimov AU - M. E. Lebedev TI - Complete Description of Bounded Solutions for a Duffing-Type Equation with a Periodic Piecewise Constant Coefficient JO - Russian journal of nonlinear dynamics PY - 2023 SP - 473 EP - 506 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2023_19_4_a1/ LA - en ID - ND_2023_19_4_a1 ER -
%0 Journal Article %A G. L. Alfimov %A M. E. Lebedev %T Complete Description of Bounded Solutions for a Duffing-Type Equation with a Periodic Piecewise Constant Coefficient %J Russian journal of nonlinear dynamics %D 2023 %P 473-506 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2023_19_4_a1/ %G en %F ND_2023_19_4_a1
G. L. Alfimov; M. E. Lebedev. Complete Description of Bounded Solutions for a Duffing-Type Equation with a Periodic Piecewise Constant Coefficient. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 473-506. http://geodesic.mathdoc.fr/item/ND_2023_19_4_a1/