Complete Description of Bounded Solutions for a Duffing-Type Equation with a Periodic Piecewise Constant Coefficient
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 473-506

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the equation $u_{xx}^{}-u+W(x)u^3=0$ where $W(x)$ is a periodic alternating piecewise constant function. It is proved that under certain conditions for $W(x)$ solutions of this equation, which are bounded on $\mathbb{R}$, $|u(x)|\xi$, can be put in one-to-one correspondence with bi-infinite sequences of numbers $n\in \{-N,\,\ldots,\,N\}$ (called “codes” of the solutions). The number $N$ depends on the bounding constant $\xi$ and the characteristics of the function $W(x)$. The proof makes use of the fact that, if $W(x)$ changes sign, then a “great part” of the solutions are singular, i.e., they tend to infinity at a finite point of the real axis. The nonsingular solutions correspond to a fractal set of initial data for the Cauchy problem in the plane $(u,\,u_x^{})$. They can be described in terms of symbolic dynamics conjugated with the map-over-period (monodromy operator) for this equation. Finally, we describe an algorithm that allows one to sketch plots of solutions by its codes.
Keywords: Duffing-type equation, periodic coefficients, symbolic dynamics, Smale horseshoe
@article{ND_2023_19_4_a1,
     author = {G. L. Alfimov and M. E. Lebedev},
     title = {Complete {Description} of {Bounded} {Solutions} for a {Duffing-Type} {Equation} with a {Periodic} {Piecewise} {Constant} {Coefficient}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {473--506},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_4_a1/}
}
TY  - JOUR
AU  - G. L. Alfimov
AU  - M. E. Lebedev
TI  - Complete Description of Bounded Solutions for a Duffing-Type Equation with a Periodic Piecewise Constant Coefficient
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 473
EP  - 506
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_4_a1/
LA  - en
ID  - ND_2023_19_4_a1
ER  - 
%0 Journal Article
%A G. L. Alfimov
%A M. E. Lebedev
%T Complete Description of Bounded Solutions for a Duffing-Type Equation with a Periodic Piecewise Constant Coefficient
%J Russian journal of nonlinear dynamics
%D 2023
%P 473-506
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_4_a1/
%G en
%F ND_2023_19_4_a1
G. L. Alfimov; M. E. Lebedev. Complete Description of Bounded Solutions for a Duffing-Type Equation with a Periodic Piecewise Constant Coefficient. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 473-506. http://geodesic.mathdoc.fr/item/ND_2023_19_4_a1/