Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2023_19_4_a0, author = {O. V. Kholostova}, title = {On {Nonlinear} {Oscillations} of a {Near-Autonomous} {Hamiltonian} {System} in {One} {Case} of {Integer} {Nonequal} {Frequencies}}, journal = {Russian journal of nonlinear dynamics}, pages = {447--471}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2023_19_4_a0/} }
TY - JOUR AU - O. V. Kholostova TI - On Nonlinear Oscillations of a Near-Autonomous Hamiltonian System in One Case of Integer Nonequal Frequencies JO - Russian journal of nonlinear dynamics PY - 2023 SP - 447 EP - 471 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2023_19_4_a0/ LA - en ID - ND_2023_19_4_a0 ER -
%0 Journal Article %A O. V. Kholostova %T On Nonlinear Oscillations of a Near-Autonomous Hamiltonian System in One Case of Integer Nonequal Frequencies %J Russian journal of nonlinear dynamics %D 2023 %P 447-471 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2023_19_4_a0/ %G en %F ND_2023_19_4_a0
O. V. Kholostova. On Nonlinear Oscillations of a Near-Autonomous Hamiltonian System in One Case of Integer Nonequal Frequencies. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 4, pp. 447-471. http://geodesic.mathdoc.fr/item/ND_2023_19_4_a0/
[1] Dokl. Akad. Nauk, 402:3 (2005), 339–343 (Russian) | DOI | MR | MR
[2] Prikl. Mat. Mekh., 70:2 (2006), 200–220 (Russian) | DOI | MR | Zbl
[3] Markeev, A. P., Linear Hamiltonian Systems and Some Problems of Stability of the Satellite Center of Mass, R Dynamics, Institute of Computer Science, Izhevsk, 2009, 396 pp. (Russian)
[4] Kholostova, O. V., “On Periodic Motions of a Nonautonomous Hamiltonian System in One Case of Multiple Parametric Resonance”, Nelin. Dinam., 13:4 (2017), 477–504 (Russian) | DOI | MR | Zbl
[5] Prikl. Mat. Mekh., 83:2 (2019), 175–201 (Russian) | DOI | MR | Zbl
[6] Kholostova, O. V., “On the Motions of One Near-Autonomous Hamiltonian System at a $1:1:1$ Resonance”, Regul. Chaotic Dyn., 24:3 (2019), 235–265 | DOI | MR | Zbl
[7] Kholostova, O. V., “On the Motions of Near-Autonomous Hamiltonian System in the Cases of Two Zero Frequencies”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:4 (2020), 672–695 (Russian) | DOI | MR | Zbl
[8] Kholostova, O. V., “On Nonlinear Oscillations of a Near-Autonomous Hamiltonian System in the Case of Two Identical Integer or Half-Integer Frequencies”, Russian J. Nonlinear Dyn., 17:1 (2021), 77–102 | MR | Zbl
[9] Kholostova, O. V., “On Nonlinear Oscillations of a Time-Periodic Hamiltonian System at a $2 : 1 : 1$ Resonance”, Russian J. Nonlinear Dyn., 18:4 (2022), 481–512 | MR
[10] Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Nauka, Moscow, 1978, 312 pp. (Russian)
[11] Moser, J., “Convergent Series Expansions for Quasi-Periodic Motions”, Math. Ann., 169:1 (1976), 136–176 | DOI
[12] Dokl. Akad. Nauk SSSR, 165:6 (1965), 1245–1248 (Russian) | MR | Zbl
[13] Byrd, P. F. and Friedman, M. D., Handbook of Elliptic Integrals for Engineers and Scientists, Grundlehren Math. Wiss., 67, 2nd ed., rev., Springer, Heidelberg, 1971, xvi, 358 pp. | Zbl
[14] Arnol'd, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, xiv, 518 pp. | DOI | Zbl
[15] Malkin, I. G., Some Problems in the Theory of Nonlinear Oscillations, In 2 Vols., v. 1, United States Atomic Energy Commission, Technical Information Service, Germantown, Md., 1959, 589 pp.