Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2023_19_3_a8, author = {D. A. Maslov}, title = {Nonlinear {Dynamics} of a {Wave} {Solid-State} {Gyroscope}}, journal = {Russian journal of nonlinear dynamics}, pages = {409--435}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2023_19_3_a8/} }
D. A. Maslov. Nonlinear Dynamics of a Wave Solid-State Gyroscope. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 3, pp. 409-435. http://geodesic.mathdoc.fr/item/ND_2023_19_3_a8/
[1] Giroskop. Navig., 28:2 (109) (2020), 3–10 (Russian) | DOI | DOI
[2] Galkin, V. I., Advanced Aircraft Gyroscopes: Operating Principle, Design, Production Technology, LAP, Saarbrücken, 2013, 156 pp. (Russian)
[3] Perelyaev, S. E., “Review and Analysis of the Lines of Development of Strapdown Inertial Navigation Systems on the Basis of Hemispherical Resonator Gyroscopes”, Novosti Navig., 2018, no. 2, 21–27 (Russian)
[4] Klimov, D. M., Zhuravlev, V. F., and Zhbanov, Yu. K., Quartz Hemispherical Resonator (Wave Solid-State Gyroscope, L. A. Kim, Moscow, 2017, 194 pp. (Russian)
[5] Izv. Akad. Nauk. Mekh. Tverd. Tela, 1993, no. 3, 15–26 (Russian) | MR
[6] Izv. Akad. Nauk. Mekh. Tverd. Tela, 1995, no. 5, 12–24 (Russian)
[7] Izv. Akad. Nauk. Mekh. Tverd. Tela, 1997, no. 6, 27–35 (Russian) | MR
[8] Izv. Akad. Nauk. Mekh. Tverd. Tela, 1998, no. 6, 5–11 (Russian)
[9] Izv. Akad. Nauk. Mekh. Tverd. Tela, 1998, no. 4, 4–17 (Russian)
[10] Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2000, no. 5, 186–192 (Russian)
[11] Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2004, no. 4, 19–23 (Russian)
[12] Izv. Akad. Nauk. Mekh. Tverd. Tela, 1995, no. 5, 12–24 (Russian)
[13] De, S. K. and Aluru, N. R., “Complex Nonlinear Oscillations in Electrostatically Actuated Microstructures”, J. Microelectromech. Syst., 15:2 (2006), 355–369 | DOI
[14] Rhoads, J. F., Shaw, S. W., Turner, K. L., Moehlis, J., DeMartini, B. E., and Zhang, W., “Generalized Parametric Resonance in Electrostatically Actuated Microelectromechanical Oscillators”, J. Sound Vibration, 296:4–5 (2006), 797–829 | DOI
[15] Indeitsev, D. A., Zavorotneva, E. V., Lukin, A. V., Popov, I. A., and Igumnova, V. S., “Nonlinear Dynamics of a Microscale Rate Integrating Gyroscope with a Disk Resonator under Parametric Excitation”, Russian J. Nonlinear Dyn., 19:1 (2023), 59–89 | MR
[16] Giroskop. Navig., 2014, no. 2, 61–69 (Russian) | MR
[17] Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2021, no. 6, 88–110 (Russian) | DOI
[18] Maslov, D. A. and Merkuryev, I. V., “Compensation of Errors Taking into Account Nonlinear Oscillations of the Vibrating Ring Microgyroscope Operating in the Angular Velocity Sensor Mode”, Nelin. Dinam., 13:2 (2017), 227–241 (Russian \itemsep=2.9pt) | DOI | MR
[19] Maslov, D. A. and Merkuryev, I. V., “The Linearization for Wave Solid-State Gyroscope Resonator Oscillations and Electrostatic Control Sensors Forces”, Nelin. Dinam., 13:3 (2017), 413–421 (Russian) | DOI | MR
[20] Maslov, D. and Merkuryev, I., “Increase in the Accuracy of the Parameters Identification for a Vibrating Ring Microgyroscope Operating in the Forced Oscillation Mode with Nonlinearity Taken into Account”, Russian J. Nonlinear Dyn., 14:3 (2018), 377–386 | MR | Zbl
[21] Kwon, H. J., Seok, S., and Lim, G., “System Modeling of a MEMS Vibratory Gyroscope and Integration to Circuit Simulation”, Sensors, 17:11 (2017), 2663, 13 pp. | DOI
[22] Naumenko, D., Tkachenko, A., Lysenko, I., and Kovalev, A., “Development and Research of the Sensitive Element of the MEMS Gyroscope Manufactured Using SOI Technology”, Micromachines, 14:4 (2023), 895, 33 pp. | DOI
[23] Gill, W. A., Howard, I., Mazhar, I., and McKee, K., “Development of Starfish-Shaped Two-Ring Microelectromechanical Systems (MEMS) Vibratory Ring Gyroscope with C-Shaped Springs for Higher Sensitivity”, Eng. Proc., 27 (2022), 36, 7 pp.
[24] Du, G., Dong, X., Huang, X., Su, W., and Zhang, P., “Reliability Evaluation Based on Mathematical Degradation Model for Vacuum Packaged MEMS Sensor”, Micromachines, 13:10 (2022), 1713, 11 pp. | DOI | MR
[25] Li, Q., Lu, K., Wu, K., Zhang, H., Sun, X., Wu, X., and Xiao, D., “A Novel High-Speed and High-Accuracy Mathematical Modeling Method of Complex MEMS Resonator Structures Based on the Multilayer Perceptron Neural Network”, Micromachines, 12:11 (2021), 1313, 16 pp. | DOI
[26] Levy, D. A. and Shapiro, A., “System Identification and Mathematical Modeling of Piezoelectric Actuator through Practical Three-Stage Mechanism”, Micromachines, 14:1 (2023), 88, 18 pp. | DOI
[27] Kuzenov, V. V. and Ryzhkov, S. V., “Mathematical Modeling of Plasma Dynamics for Processes in Capillary Discharges”, Russian J. Nonlinear Dyn., 15:4 (2019), 543–550 | MR | Zbl
[28] Kuzenov, V. V., Ryzhkov, S. V., and Starostin, A. V., “Development of a Mathematical Model and the Numerical Solution Method in a Combined Impact Scheme for MIF Target”, Russian J. Nonlinear Dyn., 16:2 (2020), 325–341 | MR
[29] Kuzenov, V. V. and Ryzhkov, S. V., “The Qualitative and Quantitative Study of Radiation Sources with a Model Configuration of the Electrode System”, Symmetry, 13:6 (2021), 927, 14 pp. | DOI | MR
[30] Shatina, A. V., Djioeva, M. I., and Osipova, L. S., “Mathematical Model of Satellite Rotation near Spin-Orbit Resonance $3:2$”, Russian J. Nonlinear Dyn., 18:4 (2022), 651–660 | MR
[31] Zh. Vychisl. Mat. Mat. Fiz., 63:3 (2023), 449–464 (Russian) | DOI | MR | Zbl
[32] Lunin, B. S., Basarab, M. A., Yurin, A. V., and Chumankin, E. A., “Fused Quartz Cylindrical Resonators for Low-Cost Vibration Gyroscopes”, Proc. of the 25th Saint Petersburg Internat. Conf. on Integrated Navigation Systems (ICINS, St. Petersburg, Jun 2018), 4 pp.
[33] Zeng, L., Luo, Y., Pan, Y., Jia, Y., Liu, J., Tan, Z., Yang, K., and Luo, H., “A $5.86$ Million Quality Factor Cylindrical Resonator with Improved Structural Design Based on Thermoelastic Dissipation Analysis”, Sensors, 20:21 (2020), 6003, 13 pp. | DOI
[34] Filin, A. P., Elements of the Theory of Shells, Stroyizdat, Leningrad, 1975, 256 pp. (Russian)
[35] Vlasov, V. Z., Selected Works: In 3 Vols., v. 1, The General Theory of Shells, AN SSSR, Moscow, 1962, 528 pp. (Russian)
[36] Egarmin, N. E., “Precession of Vibrational Standing Waves of a Rotating Axisymmetric Shell”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 21:1 (1986), 142–148 (Russian)
[37] Tikhonov, A. N., Vasil'eva, A. B., and Sveshnikov, A. G., Differential Equations, Springer, Berlin, 1985, VIII, 240 pp. | MR | Zbl
[38] Merkuriev, I. and Podalkov, V., Dynamics of Micromechanical and Wave Solid-State Gyroscopes, Fizmatlit, Moscow, 2009, 228 pp. (Russian)
[39] Zhuravlev, V. F. and Klimov, D. M., Applied Methods in Vibration Theory, Nauka, Moscow, 1988, 326 pp. (Russian) | MR
[40] Zhuravlev, V. F., Fundamentals of Theoretical Mechanics, 2nd ed., Fizmatlit, Moscow, 2001, 319 pp. (Russian)