Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2023_19_3_a7, author = {K. Suddalai Kannan and Sh. M. Abdul Kader and V. Chinnathambi and M. V. Sethu Meenakshi and Sh. Rajasekar}, title = {Nonlinear {Resonance} in a {Position-Dependent} {Mass-Duffing} {Oscillator} {System} with {Monostable} {Potentials} {Driven} by an {Amplitude-Modulated} {Signal}}, journal = {Russian journal of nonlinear dynamics}, pages = {389--408}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2023_19_3_a7/} }
TY - JOUR AU - K. Suddalai Kannan AU - Sh. M. Abdul Kader AU - V. Chinnathambi AU - M. V. Sethu Meenakshi AU - Sh. Rajasekar TI - Nonlinear Resonance in a Position-Dependent Mass-Duffing Oscillator System with Monostable Potentials Driven by an Amplitude-Modulated Signal JO - Russian journal of nonlinear dynamics PY - 2023 SP - 389 EP - 408 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2023_19_3_a7/ LA - en ID - ND_2023_19_3_a7 ER -
%0 Journal Article %A K. Suddalai Kannan %A Sh. M. Abdul Kader %A V. Chinnathambi %A M. V. Sethu Meenakshi %A Sh. Rajasekar %T Nonlinear Resonance in a Position-Dependent Mass-Duffing Oscillator System with Monostable Potentials Driven by an Amplitude-Modulated Signal %J Russian journal of nonlinear dynamics %D 2023 %P 389-408 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2023_19_3_a7/ %G en %F ND_2023_19_3_a7
K. Suddalai Kannan; Sh. M. Abdul Kader; V. Chinnathambi; M. V. Sethu Meenakshi; Sh. Rajasekar. Nonlinear Resonance in a Position-Dependent Mass-Duffing Oscillator System with Monostable Potentials Driven by an Amplitude-Modulated Signal. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 3, pp. 389-408. http://geodesic.mathdoc.fr/item/ND_2023_19_3_a7/
[1] Rajasekar, S. and Sanjuán, M. A. F., Nonlinear Resonances, Springer, Cham, 2016, xvii+409 pp. | MR
[2] Xu, P., Jin, Y., and Xiao, S., “Stochastic Resonance in a Delayed Triple-Well Potential Driven by Correlated Noises”, Chaos, 27:11 (2017), 113109, 9 pp. | DOI | MR
[3] Arathi, S. and Rajasekar, S., “Impact of the Depth of the Wells and Multifractal Analysis on Stochastic Resonance in a Triple-Well System”, Phys. Scr., 84:6 (2011), 065011, 7 pp. | DOI | MR
[4] Jeyakumari, S., Chinnathambi, V., Rajasekar, S., and Sanjuán, M. A. F., “Single and Multiple Vibrational Resonance in a Quintic Oscillator with Monostable Potentials”, Phys. Rev. E, 80:4 (2009), 046608, 8 pp. | DOI
[5] Jeyakumari, S., Chinnathambi, V., Rajasekar, S., and Sanjuán, M. A. F., “Analysis of Vibrational Resonance in a Quintic Oscillator”, Chaos, 19:4 (2009), 043128, 8 pp. | DOI
[6] Rajamani, S., Rajasekar, S., and Sanjuán, M. A. F., Ghost-Vibrational Resonance, 2014, arXiv: 1404.5394 [nlin.CD] | MR | Zbl
[7] Van der Sande, G., Verschaffelt, G., Danckaert, J., and Mirasso, C. R., “Ghost Stochastic Resonance in Vertical-Cavity Surface-Emitting Lasers: Experiment and Theory”, Phys. Rev. E, 72:1 (2005), 016113, 9 pp. | DOI
[8] Kozma, R. and Freeman, W. J., “Chaotic Resonance — Methods and Applications for Robust Classification of Noisy and Variable Patterns”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11:6 (2001), 1607–1629 | DOI
[9] He, Y., Fu, Y., Qiao, Z., and Kang, Y., “Chaotic Resonance in a Fractional-Order Oscillator System with Application to Mechanical Fault Diagnosis”, Chaos Solitons Fractals, 142 (2021), 110536, 9 pp. | DOI | MR
[10] Bogatenko, T. R. and Semenov, V. V., “Coherence Resonance in an Excitable Potential Well”, Phys. Lett. A, 382:37 (2018), 2645–2649 | DOI | MR
[11] Yamakou, M. E. and Inack, E. M., Coherence Resonance and Stochastic Synchronization in a Small-World Neural Network: An Interplay in the Presence of Spike-Timing-Dependent Plasticity, 2022, arXiv: 2201.05436 [q-bio.NC] | MR
[12] Kurniawan, A., Toan Tran, T., Brown, S. A., Eskilsson, C., Orszaghova, J., and Greaves, D., “Numerical Simulation of Parametric Resonance in Point Absorbers Using a Simplified Model”, IET Renew. Power Gener., 15:14 (2021), 3186–3205 | DOI
[13] Li, Q., Liu, W., Zhang, Z., and Yue, Z., “Parametric Resonance of Pipes with Soft and Hard Segments Conveying Pulsating Fluids”, Int. J. Struct. Stab. Dyn., 18:10 (2018), 1850119, 28 pp. | DOI | MR
[14] Sultanov, O., Autoresonance in Oscillating Systems with Combined Excitation and Weak Dissipation, 2020, arXiv: 2009.08254 [math-ph] | MR
[15] Kovaleva, A., “Excitation and Control of Autoresonance in an Oscillator Chain”, IFAC-PapersOnLine, 48:11 (2015), 1037–1042 | DOI
[16] Landa, P. S. and McClintock, P. V. E., “Vibrational Resonance”, J. Phys. A, 33:45 (2000), L433–L438 | DOI | MR | Zbl
[17] Gitterman, M., “Bistable Oscillator Driven by Two Periodic Fields”, J. Phys. A, 34:24 (2001), L355–L357 | DOI | MR | Zbl
[18] Zaikin, A. A., López, L., Baltanás, J. P., Kurths, J., and Sanjuán, M. A. F., “Vibrational Resonance in a Noise-Induced Structure”, Phys. Rev. E, 66:1 (2002), 011106, 4 pp. | DOI
[19] Ullner, E., Zaikin, A., García-Ojalvo, J., Báscones, R., and Kurths, J., “Vibrational Resonance and Vibrational Propagation in Excitable Systems”, Phys. Lett. A, 312:5–6 (2003), 348–354 | DOI | MR
[20] Baltanás, J. P., López, L., Blechman, I. I., Landa, P. S., Zaikin, A., Kurths, J., and Sanjuán, M. A. F., “Experimental Evidence, Numerics, and Theory of Vibrational Resonance in Bistable Systems”, Phys. Rev. E, 67:6 (2003), 066119, 7 pp. | DOI | MR
[21] Chizhevsky, V. N. and Giacomelli, G., “Experimental and Theoretical Study of the Noise-Induced Gain Degradation in Vibrational Resonance”, Phys. Rev. E, 70:6 (2004), 062101, 4 pp. | DOI
[22] Chizhevsky, V. N., “Analytical Study of Vibrational Resonance in an Overdamped Bistable Oscillator”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18:6 (2008), 1767–1773 | DOI
[23] Gandhimathi, V. M., Rajasekar, S., and Kurths, J., “Vibrational and Stochastic Resonances in Two Coupled Overdamped Anharmonic Oscillators”, Phys. Lett. A, 360:2 (2006), 279–286 | DOI | Zbl
[24] Gandhimathi, V. M., Rajasekar, S., and Kurths, J., “Effects of the Shape of Periodic Forces on Stochastic Resonance”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18:7 (2008), 2073–2088 | DOI
[25] Casado-Pascual, J. and Baltanás, J. P., “Effects of Additive Noise on Vibrational Resonance in a Bistable System”, Phys. Rev. E, 69:4 (2004), 046108, 7 pp. | DOI
[26] Chizhevsky, V. N. and Giacomelli, G., “Improvement of Signal-to-Noise Ratio in a Bistable Optical System: Comparison between Vibrational and Stochastic Resonance”, Phys. Rev. A, 71:1 (2005), 011801(R), 4 pp. | DOI
[27] Chizhevsky, V. N., Smeu, E., and Giacomelli, G., “Experimental Evidence of “Vibrational Resonance” in an Optical System”, Phys. Rev. Lett., 91:22 (2003), 220602, 4 pp. | DOI
[28] Jüngling, Th., Benner, H., Stemler, Th., and Just, W., “Noise-Free Stochastic Resonance at an Interior Crisis”, Phys. Rev. E, 77:3 (2008), 036216, 6 pp. | DOI
[29] Yao, C. and Zhan, M., “Signal Transmission by Vibrational Resonance in One-Way Coupled Bistable Systems”, Phys. Rev. E, 81:6 (2010), 061129, 8 pp. | DOI
[30] Yang, J. H. and Liu, X. B., “Delay-Improved Signal Propagation in Globally Coupled Bistable Systems”, Phys. Scr., 83:6 (2011), 065008, 7 pp. | DOI | MR | Zbl
[31] Borromeo, M. and Marchesoni, F., “Vibrational Ratchets”, Phys. Rev. E, 73:1 (2006), 016142, 8 pp. | DOI
[32] Borromeo, M. and Marchesogu, F., “Artificial Sieves for Quasimassless Particles”, Phys. Rev. Lett., 99:15 (2007), 150605, 4 pp. | DOI
[33] Yang, J. H. and Liu, X. B., “Delay Induces Quasi-Periodic Vibrational Resonance”, J. Phys. A, 43:12 (2010), 122001 | DOI
[34] Jeevarathinam, C., Rajasekar, S., and Sanjuán, M. A. F., “Theory and Numerics of Vibrational Resonance in Duffing Oscillator with Time-Delayed Feedback”, Phys. Rev. E, 83:6 (2011), 066205, 12 pp. | DOI
[35] Yang, J. H. and Liu, X. B., “Controlling Vibrational Resonance in a Multistable System by Time Delay”, Chaos, 20:3 (2010), 033124 | DOI
[36] Yang, J. H. and Liu, X. B., “Controlling Vibrational Resonance in a Delayed Multistable System Driven by an Amplitude-Modulated Signal”, Phys. Scr., 82:2 (2010), 025006 | DOI | Zbl
[37] Shi, J., Huang, C., Dong, T., and Zhang, X., “High-Frequency and Low-Frequency Effects on Vibrational Resonance in a Synthetic Gene Network”, Phys. Biol., 7:3 (2010), 036006 | DOI
[38] Deng, B., Wang, J., Wei, X., Tsang, K. M., and Chan, W. L., “Vibrational Resonance in Neuron Populations”, Chaos, 20:1 (2010), 013113 | DOI
[39] Yao, C., Liu, Y., and Zhau, M., “Frequency-Resonance-Enhanced Vibrational Resonance in Bistable Systems”, Phys. Rev. E, 83:6 (2011), 061122, 6 pp. | DOI | MR
[40] Shi, J.-Ch. and Dong, T., “Control of Vibrational Biresonance in a Calcium Ion System”, Acta Phys. Chim. Sin., 26:2 (2010), 487–494 | DOI
[41] Rajasekar, S., Abirami, K., and Sanjuán, M. A. F., “Novel Vibrational Resonance in Multistable Systems”, Chaos, 21:3 (2011), 033106, 7 pp. | DOI | MR | Zbl
[42] Jin, Y., Ma, Zh., and Xiao, S., “Coherence and Stochastic Resonance in a Periodic Potential Driven by Multiplicative Dichotomous and Additive White Noise”, Chaos Solitons Fractals, 103 (2017), 470–475 | DOI | MR | Zbl
[43] Mathews, P. M. and Lakshmanan, M., “On a Unique Nonlinear Oscillator”, Quart. Appl. Math., 32 (1974/75), 215–218 | DOI | MR | Zbl
[44] Cariñena, J. F., Rañada, M. F., and Santander, M., “Curvature-Dependent Formalism, Schrödinger Equation and Energy Levels for the Harmonic Oscillator on Three-Dimensional Spherical and Hyperbolic Spaces”, J. Phys. A, 45:26 (2012), 265303, 14 pp. | DOI | MR | Zbl
[45] Kozlov, V. V. and Harin, A. O., “Kepler's Problem in Constant Curvature Spaces”, Celestial Mech. Dynam. Astronom., 54:4 (1992), 393–399 | DOI | MR | Zbl
[46] Sławianowski, J. J., “Bertrand Systems on Spaces of Constant Sectional Curvature. The Action-Angle Analysis”, Rep. Math. Phys., 46:3 (2000), 429–460 | DOI | MR
[47] Ballesteros, \smash[t]{Á.}, Enciso, A., Herranz, F. J., Ragnisco, O., and Riglioni, D., “Quantum Mechanics on Spaces of Nonconstant Curvature: The Oscillator Problem and Superintegrability”, Ann. Physics, 326:8 (2011), 2053–2073 | DOI | MR | Zbl
[48] Ragnisco, O. and Riglioni, D., “A Family of Exactly Solvable Radial Quantum Systems on Space of Non-Constant Curvature with Accidental Degeneracy in the Spectrum”, SIGMA Symmetry Integrability Geom. Methods Appl., 6 (2010), 097, 10 pp. | MR | Zbl
[49] Wolf, K. B., Geometric Optics on Phase Space, Springer, Berlin, 2004, xvi+373 pp. | MR | Zbl
[50] von Roos, O., “Forces Acting on Free Carriers in Semiconductors of Inhomogeneous Composition: 1, 2”, Appl. Phys. Comm., 2:1–2 (1982), 57–87
[51] Sommerfeld, A., Lectures on Theoretical Physics, v. 1, Mechanics, Acad. Press, New York, 1964, 304 pp. | MR
[52] Krane, K., “The Falling Raindrop: Variations on a Theme of Newton”, Am. J. Phys., 49:2 (1981), 113–117 | DOI
[53] Flores, J., Solovey, G., and Gil, S., “Variable Mass Oscillator”, Am. J. Phys., 71:7 (2003), 721–725 | DOI
[54] Aquino, N., Campoy, G., and Yee-Madeira, H., “The Inversion Potential for NH$_3^{}$ Using a DFT Approach”, Chem. Phys. Lett., 296:1–2 (1998), 111–116 | DOI
[55] Hadjidemetriou, J., “Secular Variation of Mass and the Evolution of Binary Systems”, Adv. Astron. Astrophys., 5 (1967), 131–188 | DOI
[56] Richstone, D. O. and Potter, M. D., “Galactic Mass Loss: A Mild Evolutionary Correction to the Angular Size Test”, Astrophys. J., 254:2, part 1 (1982), 451–455 | DOI
[57] Bethe, H. A., “Possible Explanation of the Solar Neutrino Puzzle”, Phys. Rev. Lett., 56:12 (1986), 1305–1308 | DOI
[58] Pesce, C. P., “The Application of Lagrange Equations to Mechanical Systems with Mass Explicitly Dependent on Position”, J. Appl. Mech., 70:5 (2003), 751–756 | DOI | Zbl
[59] Davidson, M., “Variable Mass Theories in Relativistic Quantum Mechanics As an Explanation for Anomalous Low Energy Nuclear Phenomena”, J. Phys. Conf. Ser., 615 (2015), 012016 | DOI
[60] Pinto, M. B., “Introducing the Notion of Bare and Effective Mass via Newton's Second Law of Motion”, Eur. J. Phys., 28:2 (2007), 171, 10 pp. | DOI
[61] Walmsley, P., Putzke, C., Malone, L., Guillamón, I., Vignolles, D., Proust, C., Badoux, S., Coldea, A. I., Watson, M. D., Kasahara, S., Mizukami, Y., Shibauchi, T., Matsuda, Y., and Carrington, A., “Quasiparticle Mass Enhancement Close to the Quantum Critical Point in BaFe$_2^{}$(As$_{1-x}^{}$P$_x^{}$)$_2^{}$”, Phys. Rev. Lett., 110:25 (2013), 257002, 5 pp. | DOI
[62] Grinenko, V., Iida, K., Kurth, F., Efremov, D. V., Drechsler, S.-L., Cherniavskii, I., Morozov, I., Hänisch, J., Förster, T., Tarantini, C., Jaroszynski, J., Maiorov, B., Jaime, M., Yamamoto, A., Nakamura, I., Fujimoto, R., Hatano, T., Ikuta, H., and Hühne, R., “Selective Mass Enhancement Close to the Quantum Critical Point in BaFe$_2^{}$(As$_{1-x}^{}$P$_x^{}$)$_2^{}$”, Sci. Rep., 7 (2017), 4589 | DOI
[63] Wilkes, J. and Muljarov, E. A., “Exciton Effective Mass Enhancement in Coupled Quantum Wells in Electric and Magnetic Fields”, New J. Phys., 18:2 (2016), 023032, 13 pp. | DOI
[64] Pari, N. A.Á., García, D. J., and Cornaglia, P. S., “Quasiparticle Mass Enhancement as a Measure of Entanglement in the Kondo Problem”, Phys. Rev. Lett., 125:21 (2020), 217601, 5 pp. | DOI | MR
[65] El-Nabulsi, R. A., “Emergence of Quasiperiodic Quantum Wave Functions in Hausdorff Dimensional Crystals and Improved Intrinsic Carrier Concentrations”, J. Phys. Chem. Solids, 127 (2019), 224–230 | DOI
[66] El-Nabulsi, R. A., “Nonlocal Uncertainty and Its Implications in Quantum Mechanics at Ultramicroscopic Scales”, Quantum Stud.: Math. Found., 6 (2019), 123–133 | DOI | MR | Zbl
[67] El-Nabulsi, R. A., “Modeling of Electrical and Mesoscopic Circuits at Quantum Nanoscale from Heat Momentum Operator”, Phys. E, 98 (2018), 90–104 | DOI
[68] Duffing, G., Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung, Vieweg, Braunschweig, 1918, 148 pp.
[69] Roy-Layinde, T. O., Vincent, U. E., Abolade, S. A., Popoola, O. O., Laoye, J. A., and McClintock, P. V. E., “Vibrational Resonances in Driven Oscillators with Position-Dependent Mass”, Philos. Trans. Roy. Soc. A, 379:2192 (2021), 20200227, 23 pp. | DOI | MR