A Note on Forced Oscillations in Systems on a Plane
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 3, pp. 383-388.

Voir la notice de l'article provenant de la source Math-Net.Ru

A sufficient condition for the existence of forced oscillations in nonautonomous systems on a plane is presented under the assumption that the magnitude of the nonautonomous perturba- tion is small. An advantage of the results presented over analytic methods is that they can be applied in degenerate systems as well.
Keywords: periodic systems, forced oscillations, systems on a plane, degenerate systems, center.
@article{ND_2023_19_3_a6,
     author = {I. Yu. Polekhin},
     title = {A {Note} on {Forced} {Oscillations} in {Systems} on a {Plane}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {383--388},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_3_a6/}
}
TY  - JOUR
AU  - I. Yu. Polekhin
TI  - A Note on Forced Oscillations in Systems on a Plane
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 383
EP  - 388
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_3_a6/
LA  - en
ID  - ND_2023_19_3_a6
ER  - 
%0 Journal Article
%A I. Yu. Polekhin
%T A Note on Forced Oscillations in Systems on a Plane
%J Russian journal of nonlinear dynamics
%D 2023
%P 383-388
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_3_a6/
%G en
%F ND_2023_19_3_a6
I. Yu. Polekhin. A Note on Forced Oscillations in Systems on a Plane. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 3, pp. 383-388. http://geodesic.mathdoc.fr/item/ND_2023_19_3_a6/

[1] Hirsch, M. W., Differential Topology, Grad. Texts in Math., 33, Springer, New York, 1976, x, 221 pp. | DOI | MR | Zbl

[2] Newman, M. H. A., Elements of the Topology of Plane Sets of Points, 2nd ed., Dover, New York, 1992, viii+214 pp. | MR | Zbl

[3] Lefschetz, S., “On the Fixed Point Formula”, Ann. of Math. (2), 38:4 (1937), 819–822 | DOI | MR | Zbl

[4] Malkin, I. G., The Methods of Lyapunov and Poincaré in the Theory of Nonlinear Oscillations, 2nd ed., URSS, Moscow, 2010, 248 pp. (Russian) | MR

[5] Hartman, Ph., Ordinary Differential Equations, Classics Appl. Math., 38, 2nd ed., SIAM, Philadelphia, Penn., 2002, 632 pp. | MR | Zbl