Topology of Ambient 3-Manifolds of Non-Singular Flows with Twisted Saddle Orbit
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 3, pp. 371-381.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, nonsingular Morse – Smale flows on closed orientable 3-manifolds are considered under the assumption that among the periodic orbits of the flow there is only one saddle and that it is twisted. An exhaustive description of the topology of such manifolds is obtained. Namely, it is established that any manifold admitting such flows is either a lens space or a connected sum of a lens space with a projective space, or Seifert manifolds with a base homeomorphic to a sphere and three singular fibers. Since the latter are prime manifolds, the result obtained refutes the claim that, among prime manifolds, the flows considered admit only lens spaces.
Keywords: nonsingular flows, Morse – Smale flows, Seifert fiber space.
@article{ND_2023_19_3_a5,
     author = {O. V. Pochinka and D. D. Shubin},
     title = {Topology of {Ambient} {3-Manifolds} of {Non-Singular} {Flows} with {Twisted} {Saddle} {Orbit}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {371--381},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_3_a5/}
}
TY  - JOUR
AU  - O. V. Pochinka
AU  - D. D. Shubin
TI  - Topology of Ambient 3-Manifolds of Non-Singular Flows with Twisted Saddle Orbit
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 371
EP  - 381
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_3_a5/
LA  - en
ID  - ND_2023_19_3_a5
ER  - 
%0 Journal Article
%A O. V. Pochinka
%A D. D. Shubin
%T Topology of Ambient 3-Manifolds of Non-Singular Flows with Twisted Saddle Orbit
%J Russian journal of nonlinear dynamics
%D 2023
%P 371-381
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_3_a5/
%G en
%F ND_2023_19_3_a5
O. V. Pochinka; D. D. Shubin. Topology of Ambient 3-Manifolds of Non-Singular Flows with Twisted Saddle Orbit. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 3, pp. 371-381. http://geodesic.mathdoc.fr/item/ND_2023_19_3_a5/

[1] Asimov, D., “Round Handles and Non-Singular Morse – Smale Flows”, Ann. of Math. (2), 102:1 (1975), 41–54 | DOI | MR | Zbl

[2] Pochinka, O. V. and Shubin, D. D., “Non-Singular Morse – Smale Flows on $n$-Manifolds with Attractor-Repeller Dynamics”, Nonlinearity, 35:3 (2022), 1485–1499 | DOI | MR | Zbl

[3] Campos, B., Cordero, A., Alfaro, J. M., and Vindel, P., “NMS Flows on Three-Dimensional Manifolds with One Saddle Periodic Orbit”, Acta Math. Sin. (Engl. Ser.), 20:1 (2004), 47–56 | DOI | MR | Zbl

[4] Shubin, D. D., “Topology of Ambient Manifolds of Non-Singular Morse – Smale Flows with Three Periodic Orbits”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 29:6 (2021), 863–868 (Russian)

[5] Mat. Zametki, 112:3 (2022), 426–443 (Russian) | DOI | DOI | MR | Zbl

[6] Irwin, M. C., “A Classification of Elementary Cycles”, Topology, 9:1 (1970), 35–47 | DOI | MR | Zbl

[7] Rolfsen, D., Knots and Links, Math. Lecture Ser., 7, Publish or Perish, Inc., Houston, 1990, xiv+439 pp. | MR | Zbl

[8] Fomenko, A. T. and Matveev, S. V., Algorithmic and Computer Methods for Three-Manifolds, Math. Appl., 425, Kluwer, Dordrecht, 1997, xii+334 pp. | MR | Zbl

[9] Hatcher, A., Notes on Basic $3$-Manifold Topology, , 2007, 61 pp. https://pi.math.cornell.edu/<nobr>$\sim$</nobr>hatcher/3M/3M.pdf | MR

[10] Geiges, H. and Lange, C., “Seifert Fibrations of Lens Spaces”, Abh. Math. Semin. Univ. Hambg., 88:1 (2018), 1–22 | DOI | MR | Zbl

[11] Smale, S., “Differentiable Dynamical Systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl

[12] Grines, V., Medvedev, T., and Pochinka, O., Dynamical Systems on $2$- and $3$-Manifolds, Dev. Math., 46, Springer, New York, 2016, xxvi, 295 pp. | MR | Zbl