Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2023_19_3_a5, author = {O. V. Pochinka and D. D. Shubin}, title = {Topology of {Ambient} {3-Manifolds} of {Non-Singular} {Flows} with {Twisted} {Saddle} {Orbit}}, journal = {Russian journal of nonlinear dynamics}, pages = {371--381}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2023_19_3_a5/} }
TY - JOUR AU - O. V. Pochinka AU - D. D. Shubin TI - Topology of Ambient 3-Manifolds of Non-Singular Flows with Twisted Saddle Orbit JO - Russian journal of nonlinear dynamics PY - 2023 SP - 371 EP - 381 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2023_19_3_a5/ LA - en ID - ND_2023_19_3_a5 ER -
O. V. Pochinka; D. D. Shubin. Topology of Ambient 3-Manifolds of Non-Singular Flows with Twisted Saddle Orbit. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 3, pp. 371-381. http://geodesic.mathdoc.fr/item/ND_2023_19_3_a5/
[1] Asimov, D., “Round Handles and Non-Singular Morse – Smale Flows”, Ann. of Math. (2), 102:1 (1975), 41–54 | DOI | MR | Zbl
[2] Pochinka, O. V. and Shubin, D. D., “Non-Singular Morse – Smale Flows on $n$-Manifolds with Attractor-Repeller Dynamics”, Nonlinearity, 35:3 (2022), 1485–1499 | DOI | MR | Zbl
[3] Campos, B., Cordero, A., Alfaro, J. M., and Vindel, P., “NMS Flows on Three-Dimensional Manifolds with One Saddle Periodic Orbit”, Acta Math. Sin. (Engl. Ser.), 20:1 (2004), 47–56 | DOI | MR | Zbl
[4] Shubin, D. D., “Topology of Ambient Manifolds of Non-Singular Morse – Smale Flows with Three Periodic Orbits”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 29:6 (2021), 863–868 (Russian)
[5] Mat. Zametki, 112:3 (2022), 426–443 (Russian) | DOI | DOI | MR | Zbl
[6] Irwin, M. C., “A Classification of Elementary Cycles”, Topology, 9:1 (1970), 35–47 | DOI | MR | Zbl
[7] Rolfsen, D., Knots and Links, Math. Lecture Ser., 7, Publish or Perish, Inc., Houston, 1990, xiv+439 pp. | MR | Zbl
[8] Fomenko, A. T. and Matveev, S. V., Algorithmic and Computer Methods for Three-Manifolds, Math. Appl., 425, Kluwer, Dordrecht, 1997, xii+334 pp. | MR | Zbl
[9] Hatcher, A., Notes on Basic $3$-Manifold Topology, , 2007, 61 pp. https://pi.math.cornell.edu/<nobr>$\sim$</nobr>hatcher/3M/3M.pdf | MR
[10] Geiges, H. and Lange, C., “Seifert Fibrations of Lens Spaces”, Abh. Math. Semin. Univ. Hambg., 88:1 (2018), 1–22 | DOI | MR | Zbl
[11] Smale, S., “Differentiable Dynamical Systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl
[12] Grines, V., Medvedev, T., and Pochinka, O., Dynamical Systems on $2$- and $3$-Manifolds, Dev. Math., 46, Springer, New York, 2016, xxvi, 295 pp. | MR | Zbl