Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2023_19_3_a1, author = {M. I. Fakhretdinov and K. Y. Samsonov and S. V. Dmitriev and E. G. Ekomasov}, title = {Kink {Dynamics} in the $\varphi^4$ {Model} with {Extended} {Impurity}}, journal = {Russian journal of nonlinear dynamics}, pages = {303--320}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2023_19_3_a1/} }
TY - JOUR AU - M. I. Fakhretdinov AU - K. Y. Samsonov AU - S. V. Dmitriev AU - E. G. Ekomasov TI - Kink Dynamics in the $\varphi^4$ Model with Extended Impurity JO - Russian journal of nonlinear dynamics PY - 2023 SP - 303 EP - 320 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2023_19_3_a1/ LA - en ID - ND_2023_19_3_a1 ER -
%0 Journal Article %A M. I. Fakhretdinov %A K. Y. Samsonov %A S. V. Dmitriev %A E. G. Ekomasov %T Kink Dynamics in the $\varphi^4$ Model with Extended Impurity %J Russian journal of nonlinear dynamics %D 2023 %P 303-320 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2023_19_3_a1/ %G en %F ND_2023_19_3_a1
M. I. Fakhretdinov; K. Y. Samsonov; S. V. Dmitriev; E. G. Ekomasov. Kink Dynamics in the $\varphi^4$ Model with Extended Impurity. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 3, pp. 303-320. http://geodesic.mathdoc.fr/item/ND_2023_19_3_a1/
[1] The sine-Gordon Model and Its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics, eds. J. Cuevas-Maraver, P. Kevrekidis, F. Williams, Springer, Cham, 2014, XIII+263 pp. | MR | Zbl
[2] A Dynamical Perspective on the $\varphi^4$ Model: Past, Present and Future, eds. P. Kevrekidis, J. Cuevas-Maraver, Springer, Cham, 2019, 332 pp. | MR
[3] Uspekhi Fiz. Nauk, 167:4 (1997), 377–406 (Russian) | DOI | DOI
[4] Aubry, S., “A Unified Approach to the Interpretation of Displacive and Order-Disorder Systems: 2. Displacive Systems”, J. Chem. Phys., 64:8 (1976), 3392–3402 | DOI
[5] Schneider, T. and Stoll, E., “Molecular-Dynamics Study of a Three-Dimensional One-Component Model for Distortive Phase Transitions”, Phys. Rev. B, 17:3 (1978), 1302–1322 | DOI
[6] Bishop, A. R., “Defect States in Polyacetylene and Polydiacetylene”, Solid State Commun., 33:9 (1980), 955–960 | DOI
[7] Rice, M. J. and Mele, E. J., “Phenomenological Theory of Soliton Formation in Lightly-Doped Polyacetylene”, Solid State Commun., 35:6 (1980), 487–491 | DOI
[8] Yamaletdinov, R. D., Slipko, V. A., and Pershin, Yu. V., “Kinks and Antikinks of Buckled Graphene: A Testing Ground for the $\varphi^4$ Field Model”, Phys. Rev. B, 96:9 (2017), 094306, 5 pp. | DOI
[9] Yamaletdinov, R. D., Romańczukiewicz, T., and Pershin, Yu. V., “Manipulating Graphene Kinks through Positive and Negative Radiation Pressure Effects”, Carbon, 141 (2019), 253–257 | DOI
[10] Jiang, P., Li, N., and Chen, J., “Observation of Kinked Soliton Structure in Realistic Materials through Wave Packet Simulations”, Phys. Lett. A, 451 (2022), 128409 | DOI
[11] Ablowitz, M. J., Kruskal, M. D., and Ladik, J. F., “Solitary Wave Collisions”, SIAM J. Appl. Math., 36:3 (1979), 428–437 | DOI | MR | Zbl
[12] Goodman, R. H. and Haberman, R., “Kink-Antikink Collisions in the $\varphi^4$ Equation: The $n$-Bounce Resonance and the Separatrix Map”, SIAM J. Appl. Dyn. Syst., 4:4 (2005), 1195–1228 | DOI | MR | Zbl
[13] Gani, V. A., Kudryavtsev, A. E., and Lizunova, M. A., “Kink Interactions in the $(1+1)$-Dimensional $\varphi^6$ Model”, Phys. Rev. D, 89:12 (2014), 125009, 12 pp. | DOI
[14] Marjaneh, A. M., Saadatmand, D., Zhou, K., Dmitriev, S. V., and Zomorrodian, M. E., “High Energy Density in the Collision of $N$ Kinks in the $\phi^4$ Model”, Commun. Nonlinear Sci. Numer. Simul., 49 (2017), 30–38 | DOI | MR | Zbl
[15] Yan, H., Zhong, Y., Liu, Y.-X., and Maeda, K., “Kink-Antikink Collision in a Lorentz-Violating $\phi^4$ Model”, Phys. Lett. B, 807:13 (2020), 135542, 7 pp. | DOI | MR | Zbl
[16] Kudryavtsev, A. E. and Lizunova, M. A., “Search for Long-Living Topological Solutions of the Nonlinear $\varphi^4$ Field Theory”, Phys. Rev. D, 95:5 (2017), 056009, 6 pp. | DOI | MR
[17] Dorey, P., Mersh, K., Romańczukiewicz, T., and Shnir, Y., “Kink – Antikink Collisions in the $\varphi^6$ Model”, Phys. Rev. Lett., 107:9 (2011), 091602, 5 pp. | DOI
[18] Marjaneh, A. M., Saadatmand, D., Zhou, K., Dmitriev, S. V., and Zomorrodian, M. E., “High Energy Density in the Collision of $N$ Kinks in the $\phi^4$ Model”, Commun. Nonlinear Sci. Numer. Simul., 49 (2017), 30–38 | DOI | MR | Zbl
[19] Adam, C., Dorey, P., Martín-Caro, A. G., Huidobro, M., Oles, K., Romańczukiewicz, T., Shnir, Y., and Wereszczynski, A., “Multikink Scattering in the $\varphi^6$ Model Revisited”, Phys. Rev. D, 106:12 (2022), 125003, 18 pp. | DOI | MR
[20] Marjaneh, A., Gani, V. A., Saadatmand, D., Dmitriev, S. V., and Javidan, K., “Multi-Kink Collisions in the $\phi^6$ Model”, J. High Energ. Phys., 2017:7 (2017), 28, 21 pp. | DOI | MR | Zbl
[21] Blinov, P. A., Gani, T. V., Malnev, A. A., Gani, V. A., and Sherstyukov, V. B., “Kinks in Higher-Order Polynomial Models”, Chaos Solitons Fractals, 165:2 (2022), 112805, 22 pp. | DOI | Zbl
[22] Takyi, I., Gyampoh, S., Barnes, B., Ackora-Prah, J., and Okyere, G. A., “Kink Collision in the Noncanonical $\varphi^6$ Model: A Model with Localized Inner Structures”, Results Phys., 44 (2023), 106197, 9 pp. | DOI
[23] Khare, A. and Saxena, A., “Kink Solutions with Power Law Tails”, Front. Phys., 10 (2022), 992915, 23 pp. | DOI
[24] Saadatmand, D. and Marjaneh, A. M., “Scattering of the Asymmetric $\varphi^6$ Kinks from a $PT$-Symmetric Perturbation: Creating Multiple Kink – Antikink Pairs from Phonons”, Eur. Phys. J. B, 95:9 (2022), 144, 18 pp. | DOI
[25] Belendryasova, E. and Gani, V. A., “Scattering of the $\varphi^8$ Kinks with Power-Law Asymptotics”, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 414–426 | DOI | MR | Zbl
[26] Pis'ma v Zh. Èksper. Teoret. Fiz., 101:7 (2015), 550–555 (Russian) | DOI
[27] Saadatmand, D. and Javidan, K., “Collective-Coordinate Analysis of Inhomogeneous Nonlinear Klein – Gordon Field Theory”, Braz. J. Phys., 43:1–2 (2013), 48–56 | DOI
[28] Ghahraman, A., “Dynamics of $\varphi^4$ Kinks by Using Adomian Decomposition Method”, Am. J. Numer. Anal., 4:1 (2016), 8–10
[29] Kälbermann, G., “Soliton Tunneling”, Phys. Rev. E, 55:6 (1997), R6360–R6362 | DOI
[30] Mohammadi, M. and Momeni, E., “Scattering of Kinks in the $B\varphi^4$ Model”, Chaos Solitons Fractals, 165:2 (2022), 112834, 30 pp. | DOI | MR | Zbl
[31] Campos, J. G. F., Mohammadi, A., Queiruga, J. M., Wereszczynski, A., and Zakrzewski, W. J., “Fermionic Spectral Walls in Kink Collisions”, J. High Energy Phys., 2023, no. 1, 71, 18 pp. | DOI | MR
[32] Piette, B. and Zakrzewski, W. J., “Scattering of Sine-Gordon Kinks on Potential Wells”, J. Phys. A, 40:22 (2007), 5995–6010 | DOI | MR | Zbl
[33] Goodman, R. H. and Haberman, R., “Interaction of sine-Gordon Kinks with Defects: The Two-Bounce Resonance”, Phys. D, 195:3–4 (2004), 303–323 | DOI | MR | Zbl
[34] González, J. A., Bellorín, A., García-Ñustes, M. A., Guerrero, L. E., Jiménez, S., and Vázquez, L., “Arbitrarily Large Numbers of Kink Internal Modes in Inhomogeneous Sine-Gordon Equations”, Phys. Lett. A, 381:24 (2017), 1995–1998 | DOI | MR | Zbl
[35] Gumerov, A. M., Ekomasov, E. G., Kudryavtsev, R. V., and Fakhretdinov, M. I., “Excitation of Large-Amplitude Localized Nonlinear Waves by the Interaction of Kinks of the sine-Gordon-Equation with Attracting Impurity”, Russian J. Nonlinear Dyn., 15:1 (2019), 21–34 | MR | Zbl
[36] Ekomasov, E. G., Nazarov, V. N., and Samsonov, K. Yu., “Changing the Dynamic Parameters of Localized Breather and Soliton Waves in the sine-Gordon Model with Extended Impurity, External Force, and Decay in the Autoresonance Mode”, Russian J. Nonlinear Dyn., 18:2 (2022), 217–229 | MR
[37] Ekomasov, E. G., Gumerov, A. M., and Kudryavtsev, R. V., “Resonance Dynamics of Kinks in the sine-Gordon Model with Impurity, External Force and Damping”, J. Comput. Appl. Math., 312 (2017), 198–208 | DOI | MR | Zbl
[38] Ekomasov, E. G., Gumerov, A. M., Kudryavtsev, R. V., Dmitriev, S. V., and Nazarov, V. N., “Multisoliton Dynamics in the sine-Gordon Model with Two Point Impurities”, Braz. J. Phys., 48:6 (2018), 576–584 | DOI
[39] Fei, Zh., Kivshar, Yu. S., and Vázquez, L., “Resonant Kink-Impurity Interactions in the $\varphi^4$ Model”, Phys. Rev. A, 46:8 (1992), 5214–5220 | DOI
[40] Malomed, B. A., “Perturbative Analysis of the Interaction of a $\varphi^4$ Kink with Inhomogeneities”, J. Phys. A, 25:4 (1992), 755–764 | DOI | MR
[41] Lizunova, M. A., Kager, J., de Lange, S., and van Wezel, J., “Kinks and Realistic Impurity Models in $\varphi^4$-Theory”, Int. J. Mod. Phys. B, 36:05 (2022), 2250042, 12 pp. | DOI
[42] Piette, B. and Zakrzewski, W. J., “Dynamical Properties of a Soliton in a Potential Well”, J. Phys. A, 40:2 (2007), 329–346 | DOI | MR | Zbl
[43] Lizunova, M., Kager, J., de Lange, S., and van Wezel, J., “Emergence of Oscillons in Kink-Impurity Interactions”, J. Phys. A, 54:31 (2021), 315701, 9 pp. | DOI | MR | Zbl
[44] Romańczukiewicz, T., and Shnir, Y., “Oscillons in the Presence of External Potential”, J. High Energ. Phys., 2018:1 (2018), 101, 24 pp. | DOI | MR
[45] Dorey, P. and Romańczukiewicz, T., “Resonant Kink – Antikink Scattering through Quasinormal Modes”, Phys. Lett. B, 779 (2018), 117–123 | DOI
[46] Schiesser, W. E., The Numerical Method of Lines: Integration of Partial Differential Equations, Acad. Press, Cambridge, Mass., 1991, 326 pp. | MR | Zbl
[47] Paul, D. I., “Soliton Theory and the Dynamics of a Ferromagnetic Domain Wall”, J. Phys. C, 12:3 (1979), 585–595 | DOI
[48] Braun, O. M. and Kivshar, Yu., The Frenkel – Kontorova Model: Concepts, Methods, and Applications, Springer, Berlin, 2004, XVIII, 472 pp. | MR | Zbl