Kink Dynamics in the $\varphi^4$ Model with Extended Impurity
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 3, pp. 303-320.

Voir la notice de l'article provenant de la source Math-Net.Ru

The $\varphi^4$ theory is widely used in many areas of physics, from cosmology and elementary particle physics to biophysics and condensed matter theory. Topological defects, or kinks, in this theory describe stable, solitary wave excitations. In practice, these excitations, as they propagate, necessarily interact with impurities or imperfections in the on-site potential. In this work, we focus on the effect of the length and strength of a rectangular impurity on the kink dynamics. It is found that the interaction of a kink with an extended impurity is qualitatively similar to the interaction with a well-studied point impurity described by the delta function, but significant quantitative differences are observed. The interaction of kinks with an extended impurity described by a rectangular function is studied numerically. All possible scenarios of kink dynamics are determined and described, taking into account resonance effects. The inelastic interaction of the kink with the repulsive impurity arises only at high initial kink velocities. The dependencies of the critical and resonant velocities of the kink on the impurity parameters are found. It is shown that the critical velocity of the repulsive impurity passage is proportional to the square root of the barrier area, as in the case of the sine-Gordon equation with an impurity. It is shown that the resonant interaction in the $\varphi^4$ model with an attracting extended impurity, as well as for the case of a point impurity, in contrast to the case of the sine-Gordon equation, is due to the fact that the kink interacts not only with the impurity mode, but also with the kink’s internal mode. It is found that the dependence of the kink final velocity on the initial one has a large number of resonant windows.
Keywords: kink, impurity, resonant interaction.
Mots-clés : Klein – Gordon equation
@article{ND_2023_19_3_a1,
     author = {M. I. Fakhretdinov and K. Y. Samsonov and S. V. Dmitriev and E. G. Ekomasov},
     title = {Kink {Dynamics} in the $\varphi^4$ {Model} with {Extended} {Impurity}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {303--320},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_3_a1/}
}
TY  - JOUR
AU  - M. I. Fakhretdinov
AU  - K. Y. Samsonov
AU  - S. V. Dmitriev
AU  - E. G. Ekomasov
TI  - Kink Dynamics in the $\varphi^4$ Model with Extended Impurity
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 303
EP  - 320
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_3_a1/
LA  - en
ID  - ND_2023_19_3_a1
ER  - 
%0 Journal Article
%A M. I. Fakhretdinov
%A K. Y. Samsonov
%A S. V. Dmitriev
%A E. G. Ekomasov
%T Kink Dynamics in the $\varphi^4$ Model with Extended Impurity
%J Russian journal of nonlinear dynamics
%D 2023
%P 303-320
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_3_a1/
%G en
%F ND_2023_19_3_a1
M. I. Fakhretdinov; K. Y. Samsonov; S. V. Dmitriev; E. G. Ekomasov. Kink Dynamics in the $\varphi^4$ Model with Extended Impurity. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 3, pp. 303-320. http://geodesic.mathdoc.fr/item/ND_2023_19_3_a1/

[1] The sine-Gordon Model and Its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics, eds. J. Cuevas-Maraver, P. Kevrekidis, F. Williams, Springer, Cham, 2014, XIII+263 pp. | MR | Zbl

[2] A Dynamical Perspective on the $\varphi^4$ Model: Past, Present and Future, eds. P. Kevrekidis, J. Cuevas-Maraver, Springer, Cham, 2019, 332 pp. | MR

[3] Uspekhi Fiz. Nauk, 167:4 (1997), 377–406 (Russian) | DOI | DOI

[4] Aubry, S., “A Unified Approach to the Interpretation of Displacive and Order-Disorder Systems: 2. Displacive Systems”, J. Chem. Phys., 64:8 (1976), 3392–3402 | DOI

[5] Schneider, T. and Stoll, E., “Molecular-Dynamics Study of a Three-Dimensional One-Component Model for Distortive Phase Transitions”, Phys. Rev. B, 17:3 (1978), 1302–1322 | DOI

[6] Bishop, A. R., “Defect States in Polyacetylene and Polydiacetylene”, Solid State Commun., 33:9 (1980), 955–960 | DOI

[7] Rice, M. J. and Mele, E. J., “Phenomenological Theory of Soliton Formation in Lightly-Doped Polyacetylene”, Solid State Commun., 35:6 (1980), 487–491 | DOI

[8] Yamaletdinov, R. D., Slipko, V. A., and Pershin, Yu. V., “Kinks and Antikinks of Buckled Graphene: A Testing Ground for the $\varphi^4$ Field Model”, Phys. Rev. B, 96:9 (2017), 094306, 5 pp. | DOI

[9] Yamaletdinov, R. D., Romańczukiewicz, T., and Pershin, Yu. V., “Manipulating Graphene Kinks through Positive and Negative Radiation Pressure Effects”, Carbon, 141 (2019), 253–257 | DOI

[10] Jiang, P., Li, N., and Chen, J., “Observation of Kinked Soliton Structure in Realistic Materials through Wave Packet Simulations”, Phys. Lett. A, 451 (2022), 128409 | DOI

[11] Ablowitz, M. J., Kruskal, M. D., and Ladik, J. F., “Solitary Wave Collisions”, SIAM J. Appl. Math., 36:3 (1979), 428–437 | DOI | MR | Zbl

[12] Goodman, R. H. and Haberman, R., “Kink-Antikink Collisions in the $\varphi^4$ Equation: The $n$-Bounce Resonance and the Separatrix Map”, SIAM J. Appl. Dyn. Syst., 4:4 (2005), 1195–1228 | DOI | MR | Zbl

[13] Gani, V. A., Kudryavtsev, A. E., and Lizunova, M. A., “Kink Interactions in the $(1+1)$-Dimensional $\varphi^6$ Model”, Phys. Rev. D, 89:12 (2014), 125009, 12 pp. | DOI

[14] Marjaneh, A. M., Saadatmand, D., Zhou, K., Dmitriev, S. V., and Zomorrodian, M. E., “High Energy Density in the Collision of $N$ Kinks in the $\phi^4$ Model”, Commun. Nonlinear Sci. Numer. Simul., 49 (2017), 30–38 | DOI | MR | Zbl

[15] Yan, H., Zhong, Y., Liu, Y.-X., and Maeda, K., “Kink-Antikink Collision in a Lorentz-Violating $\phi^4$ Model”, Phys. Lett. B, 807:13 (2020), 135542, 7 pp. | DOI | MR | Zbl

[16] Kudryavtsev, A. E. and Lizunova, M. A., “Search for Long-Living Topological Solutions of the Nonlinear $\varphi^4$ Field Theory”, Phys. Rev. D, 95:5 (2017), 056009, 6 pp. | DOI | MR

[17] Dorey, P., Mersh, K., Romańczukiewicz, T., and Shnir, Y., “Kink – Antikink Collisions in the $\varphi^6$ Model”, Phys. Rev. Lett., 107:9 (2011), 091602, 5 pp. | DOI

[18] Marjaneh, A. M., Saadatmand, D., Zhou, K., Dmitriev, S. V., and Zomorrodian, M. E., “High Energy Density in the Collision of $N$ Kinks in the $\phi^4$ Model”, Commun. Nonlinear Sci. Numer. Simul., 49 (2017), 30–38 | DOI | MR | Zbl

[19] Adam, C., Dorey, P., Martín-Caro, A. G., Huidobro, M., Oles, K., Romańczukiewicz, T., Shnir, Y., and Wereszczynski, A., “Multikink Scattering in the $\varphi^6$ Model Revisited”, Phys. Rev. D, 106:12 (2022), 125003, 18 pp. | DOI | MR

[20] Marjaneh, A., Gani, V. A., Saadatmand, D., Dmitriev, S. V., and Javidan, K., “Multi-Kink Collisions in the $\phi^6$ Model”, J. High Energ. Phys., 2017:7 (2017), 28, 21 pp. | DOI | MR | Zbl

[21] Blinov, P. A., Gani, T. V., Malnev, A. A., Gani, V. A., and Sherstyukov, V. B., “Kinks in Higher-Order Polynomial Models”, Chaos Solitons Fractals, 165:2 (2022), 112805, 22 pp. | DOI | Zbl

[22] Takyi, I., Gyampoh, S., Barnes, B., Ackora-Prah, J., and Okyere, G. A., “Kink Collision in the Noncanonical $\varphi^6$ Model: A Model with Localized Inner Structures”, Results Phys., 44 (2023), 106197, 9 pp. | DOI

[23] Khare, A. and Saxena, A., “Kink Solutions with Power Law Tails”, Front. Phys., 10 (2022), 992915, 23 pp. | DOI

[24] Saadatmand, D. and Marjaneh, A. M., “Scattering of the Asymmetric $\varphi^6$ Kinks from a $PT$-Symmetric Perturbation: Creating Multiple Kink – Antikink Pairs from Phonons”, Eur. Phys. J. B, 95:9 (2022), 144, 18 pp. | DOI

[25] Belendryasova, E. and Gani, V. A., “Scattering of the $\varphi^8$ Kinks with Power-Law Asymptotics”, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 414–426 | DOI | MR | Zbl

[26] Pis'ma v Zh. Èksper. Teoret. Fiz., 101:7 (2015), 550–555 (Russian) | DOI

[27] Saadatmand, D. and Javidan, K., “Collective-Coordinate Analysis of Inhomogeneous Nonlinear Klein – Gordon Field Theory”, Braz. J. Phys., 43:1–2 (2013), 48–56 | DOI

[28] Ghahraman, A., “Dynamics of $\varphi^4$ Kinks by Using Adomian Decomposition Method”, Am. J. Numer. Anal., 4:1 (2016), 8–10

[29] Kälbermann, G., “Soliton Tunneling”, Phys. Rev. E, 55:6 (1997), R6360–R6362 | DOI

[30] Mohammadi, M. and Momeni, E., “Scattering of Kinks in the $B\varphi^4$ Model”, Chaos Solitons Fractals, 165:2 (2022), 112834, 30 pp. | DOI | MR | Zbl

[31] Campos, J. G. F., Mohammadi, A., Queiruga, J. M., Wereszczynski, A., and Zakrzewski, W. J., “Fermionic Spectral Walls in Kink Collisions”, J. High Energy Phys., 2023, no. 1, 71, 18 pp. | DOI | MR

[32] Piette, B. and Zakrzewski, W. J., “Scattering of Sine-Gordon Kinks on Potential Wells”, J. Phys. A, 40:22 (2007), 5995–6010 | DOI | MR | Zbl

[33] Goodman, R. H. and Haberman, R., “Interaction of sine-Gordon Kinks with Defects: The Two-Bounce Resonance”, Phys. D, 195:3–4 (2004), 303–323 | DOI | MR | Zbl

[34] González, J. A., Bellorín, A., García-Ñustes, M. A., Guerrero, L. E., Jiménez, S., and Vázquez, L., “Arbitrarily Large Numbers of Kink Internal Modes in Inhomogeneous Sine-Gordon Equations”, Phys. Lett. A, 381:24 (2017), 1995–1998 | DOI | MR | Zbl

[35] Gumerov, A. M., Ekomasov, E. G., Kudryavtsev, R. V., and Fakhretdinov, M. I., “Excitation of Large-Amplitude Localized Nonlinear Waves by the Interaction of Kinks of the sine-Gordon-Equation with Attracting Impurity”, Russian J. Nonlinear Dyn., 15:1 (2019), 21–34 | MR | Zbl

[36] Ekomasov, E. G., Nazarov, V. N., and Samsonov, K. Yu., “Changing the Dynamic Parameters of Localized Breather and Soliton Waves in the sine-Gordon Model with Extended Impurity, External Force, and Decay in the Autoresonance Mode”, Russian J. Nonlinear Dyn., 18:2 (2022), 217–229 | MR

[37] Ekomasov, E. G., Gumerov, A. M., and Kudryavtsev, R. V., “Resonance Dynamics of Kinks in the sine-Gordon Model with Impurity, External Force and Damping”, J. Comput. Appl. Math., 312 (2017), 198–208 | DOI | MR | Zbl

[38] Ekomasov, E. G., Gumerov, A. M., Kudryavtsev, R. V., Dmitriev, S. V., and Nazarov, V. N., “Multisoliton Dynamics in the sine-Gordon Model with Two Point Impurities”, Braz. J. Phys., 48:6 (2018), 576–584 | DOI

[39] Fei, Zh., Kivshar, Yu. S., and Vázquez, L., “Resonant Kink-Impurity Interactions in the $\varphi^4$ Model”, Phys. Rev. A, 46:8 (1992), 5214–5220 | DOI

[40] Malomed, B. A., “Perturbative Analysis of the Interaction of a $\varphi^4$ Kink with Inhomogeneities”, J. Phys. A, 25:4 (1992), 755–764 | DOI | MR

[41] Lizunova, M. A., Kager, J., de Lange, S., and van Wezel, J., “Kinks and Realistic Impurity Models in $\varphi^4$-Theory”, Int. J. Mod. Phys. B, 36:05 (2022), 2250042, 12 pp. | DOI

[42] Piette, B. and Zakrzewski, W. J., “Dynamical Properties of a Soliton in a Potential Well”, J. Phys. A, 40:2 (2007), 329–346 | DOI | MR | Zbl

[43] Lizunova, M., Kager, J., de Lange, S., and van Wezel, J., “Emergence of Oscillons in Kink-Impurity Interactions”, J. Phys. A, 54:31 (2021), 315701, 9 pp. | DOI | MR | Zbl

[44] Romańczukiewicz, T., and Shnir, Y., “Oscillons in the Presence of External Potential”, J. High Energ. Phys., 2018:1 (2018), 101, 24 pp. | DOI | MR

[45] Dorey, P. and Romańczukiewicz, T., “Resonant Kink – Antikink Scattering through Quasinormal Modes”, Phys. Lett. B, 779 (2018), 117–123 | DOI

[46] Schiesser, W. E., The Numerical Method of Lines: Integration of Partial Differential Equations, Acad. Press, Cambridge, Mass., 1991, 326 pp. | MR | Zbl

[47] Paul, D. I., “Soliton Theory and the Dynamics of a Ferromagnetic Domain Wall”, J. Phys. C, 12:3 (1979), 585–595 | DOI

[48] Braun, O. M. and Kivshar, Yu., The Frenkel – Kontorova Model: Concepts, Methods, and Applications, Springer, Berlin, 2004, XVIII, 472 pp. | MR | Zbl