Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2023_19_2_a8, author = {V. M. Moskvitin and N. I. Semenova}, title = {Noise {Impact} on a {Recurrent} {Neural} {Network} with}, journal = {Russian journal of nonlinear dynamics}, pages = {281--293}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2023_19_2_a8/} }
V. M. Moskvitin; N. I. Semenova. Noise Impact on a Recurrent Neural Network with. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 2, pp. 281-293. http://geodesic.mathdoc.fr/item/ND_2023_19_2_a8/
[1] LeCun, Y., Bengio, Y., and Hinton, G., “Deep Learning”, Nature, 521:7553 (2015), 436–444 | DOI | MR
[2] Maturana, D. and Scherer, S., “VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition”, IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (IROS, Hamburg, Germany, 2015), 922–928
[3] Krizhevsky, A., Sutskever, I., and Hinton, G. E., “ImageNet Classification with Deep Convolutional Neural Networks”, Commun. ACM, 60:6 (2017), 84–90 | DOI
[4] Graves, A., Mohamed, A., and Hinton, G., “Speech Recognition with Deep Recurrent Neural Networks”, IEEE Internat. Conf. on Acoustics, Speech and Signal Processing (Vancouver, British Columbia, Canada, May 2013), 6645–6649
[5] Kar, S. and Moura, J. M. F., “Distributed Consensus Algorithms in Sensor Networks with Imperfect Communication: Link Failures and Channel Noise”, IEEE Trans. Signal Process., 57:1 (2009), 355–369 | DOI | MR | Zbl
[6] Brunner, D., Soriano, M. C., Mirasso, C. R., and Fischer, I., “Parallel Photonic Information Processing at Gigabyte per Second Data Rates Using Transient States”, Nat. Commun., 4:1 (2013), 1364, 6 pp. | DOI
[7] Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A., and Eleftheriou, E., “Stochastic Phase-Change Neurons”, Nat. Nanotechnol., 11:8 (2016), 693–699 | DOI
[8] Torrejon, J., Riou, M., Araujo, F. A., Tsunegi, S., Khalsa, G., Querlioz, D., Bortolotti, P., Cros, V., Yakushiji, K., Fukushima, A., Kubota, H., Yuasa, S., Stiles, M. D., and Grollier, J., “Neuromorphic Computing with Nanoscale Spintronic Oscillators”, Nature, 547:7664 (2017), 428–431 | DOI
[9] Psaltis, D., Brady, D., Gu, X.-G., and Lin, S., “Holography in Artificial Neural Networks”, Nature, 343:6256 (1990), 325–330 | DOI
[10] Bueno, J., Maktoobi, S., Froehly, L., Fischer, I., Jacquot, M., Larger, L., and Brunner, D., “Reinforcement Learning in a Large Scale Photonic Recurrent Neural Network”, Optica, 5:6 (2018), 756–760 | DOI | MR
[11] Lin, X., Rivenson, Y., Yardimci, N. T., Veli, M., Luo, Y., Jarrahi, M., and Ozcan, A., “All-Optical Machine Learning Using Diffractive Deep Neural Networks”, Science, 361:6406 (2018), 1004–1008 | DOI | MR | Zbl
[12] Shen, Y., Harris, N. C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., Sun, X., Zhao, S., Larochelle, H., Englund, D., and Soljacic, M., “Deep Learning with Coherent Nanophotonic Circuits”, Nature Photon., 11:7 (2017), 441–446 | DOI
[13] Tait, A. N., De Lima, T. F., Zhou, E., Wu, A. X., Nahmias, M. A., Shastri, B. J., and Prucnal, P. R., “Neuromorphic Photonic Networks Using Silicon Photonic Weight Banks”, Sci. Rep., 7:1 (2017), 7430, 10 pp. | DOI | MR
[14] Moughames, J., Porte, X., Thiel, M., Ulliac, G., Larger, L., Jacquot, M., Kadic, M., and Brunner, D., “Three-Dimensional Waveguide Interconnects for Scalable Integration of Photonic Neural Networks”, Optica, 7:6 (2020), 640–646 | DOI
[15] Dinc, N. U., Psaltis, D., and Brunner, D., “Optical Neural Networks: The 3D Connection”, Photoniques, 2020, no. 104, 34–38 | DOI
[16] Moughames, J., Porte, X., Larger, L., Jacquot, M., Kadic, M., and Brunner, D., “3D Printed Multimode-Splitters for Photonic Interconnects”, Opt. Mater. Express, 10:11 (2020), 2952–2961 | DOI
[17] Mourgias-Alexandris, G., Moralis-Pegios, M., Tsakyridis, A., Simos, S., Dabos, G., Totovic, A., Passalis, N., Kirtas, M., Rutirawut, T., Gardes, F. Y., Tefas, A., and Pleros, N., “Noise-Resilient and High-Speed Deep Learning with Coherent Silicon Photonics”, Nat. Commun., 13:1 (2022), 5572, 7 pp. | DOI
[18] Wang, T., Ma, S.-Y., Wright, L. G., Onodera, T., Richard, B. C., and McMahon, P. L., “An Optical Neural Network Using Less Than $1$ Photon per Multiplication”, Nat. Commun., 13:1 (2022), 123, 7 pp. | DOI
[19] Semenova, N., Porte, X., Andreoli, L., Jacquot, M., Larger, L., and Brunner, D., “Fundamental Aspects of Noise in Analog-Hardware Neural Networks”, Chaos, 29:10 (2019), 103128, 11 pp. | DOI | MR | Zbl
[20] Semenova, N., Larger, L., and Brunner, D., “Understanding and Mitigating Noise in Trained Deep Neural Networks”, Neural Netw., 146 (2022), 151–160 \itemsep=2pt | DOI
[21] Semenova, N. and Brunner, D., “Noise-Mitigation Strategies in Physical Feedforward Neural Networks”, Chaos, 32:6 (2022), 061106, 10 pp. | DOI | MR
[22] Johnson, D. H., “Signal-to-Noise Ratio”, Scholarpedia, 1:12 (2006), 2088 | DOI
[23] Lukoševičius, M. and Jaeger, H., “Reservoir Computing Approaches to Recurrent Neural Network Training”, Comput. Sci. Rev., 3:3 (2009), 127–149 | DOI | MR | Zbl