On a Class of Precessions of a Rigid Body
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 2, pp. 249-264.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with a special class of precessions of a rigid body having a fixed point in a force field which is a superposition of three homogeneous force fields. It is assumed that the velocity of proper rotation of the body is twice as large as its velocity of precession. The conditions for the existence of the precessions under study are written in the form of a system of algebraic equations for the parameters of the problem. Its solvability is proved for a dynamically symmetric body. It is proved that, if the ellipsoid of inertia of the body is a sphere, then the nutation angle is equal to $\arccos \frac{1}{3}$. The resulting solution of the equations of motion of the body is represented as elliptic Jacobi functions.
Keywords: three homogeneous force fields, precessions, dynamically symmetric bodies, elliptic functions.
@article{ND_2023_19_2_a6,
     author = {G. V. Gorr},
     title = {On a {Class} of {Precessions} of a {Rigid} {Body}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {249--264},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_2_a6/}
}
TY  - JOUR
AU  - G. V. Gorr
TI  - On a Class of Precessions of a Rigid Body
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 249
EP  - 264
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_2_a6/
LA  - en
ID  - ND_2023_19_2_a6
ER  - 
%0 Journal Article
%A G. V. Gorr
%T On a Class of Precessions of a Rigid Body
%J Russian journal of nonlinear dynamics
%D 2023
%P 249-264
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_2_a6/
%G en
%F ND_2023_19_2_a6
G. V. Gorr. On a Class of Precessions of a Rigid Body. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 2, pp. 249-264. http://geodesic.mathdoc.fr/item/ND_2023_19_2_a6/

[1] Ishlinsky, A., Orientation, gyroscopes et navigation par inertie: In 2 Vols., Mir, Moscow, 1984

[2] Klein, F. and Sommerfeld, A., Über die Theorie des Kreisels, Johnson, New York, 1965, 966 pp. | MR

[3] Grioli, G., “Esistenza e determinazione delle precessioni regolari dinamicamente possibili per un solido pesante asimmetrico”, Ann. Mat. Pura Appl. (4), 26:3–4 (1947), 271–281 | DOI | MR | Zbl

[4] Bressan, A., “Sulle precessioni d'un corpo rigido costituenti moti di Hess”, Rend. Semin. Mat. Univ. Padova, 27 (1957), 276–283 | MR | Zbl

[5] Dokshevich, A. I., Finite-Form Solutions of the Euler – Poisson Equations, Naukova Dumka, Kiev, 1992, 168 pp. (Russian) | MR

[6] Prikl. Mat. Mekh., 67:4 (2003), 573–587 (Russian) | DOI | MR | Zbl

[7] Gorr, G. V., Maznev, A. V., and Shchetinina, E. K., Precessional Motions in Rigid Body Dynamics and the Dynamics of Systems of Coupled Rigid Bodies, DonNU, Donetsk, 2009, 222 pp. (Russian)

[8] Gorr, G. V. and Maznev, A. V., Dynamics of a Gyrostat with a Fixed Point, DonNU, Donetsk, 2010, 364 pp. (Russian)

[9] Gorr, G. V., Maznev, A. V., and Kotov, G. A., Motion of a Gyrostat with Variable Gyrostatic Momentum, IPMM, Donetsk, 2018, 265 pp. (Russian)

[10] Prikl. Mat. Mekh., 82:5 (2018), 559–571 (Russian) | DOI | MR | Zbl

[11] Ol'shanskii, V. Yu., “New Cases of Regular Precession of an Asymmetric Liquid-Filled Rigid Body”, Celestial Mech. Dynam. Astronom., 131:12 (2019), 57, 19 pp. | DOI | MR | Zbl

[12] Prikl. Mat. Mekh., 85:5 (2021), 547–564 (Russian) | DOI | MR

[13] Kharlamov, P. V., “On the Equations of Motion of a System of Solids”, Mekh. Tverd. Tela, 1972, no. 4, 52–73 (Russian)

[14] Prikl. Mat. Mekh., 52:5 (1988), 707–712 (Russian) | DOI | MR | Zbl

[15] Kharlamov, M. P., “The Critical Set and the Bifurcation Diagram of the Problem of Motion of the Kowalevski Top in Double Field”, Mekh. Tverd. Tela, 2004, no. 34, 47–58 (Russian) | MR | Zbl

[16] Kharlamov, M. P., “Special Periodic Motions of the Kowalevski Gyrostat in Two Constant Fields”, Mekh. Tverd. Tela, 2007, no. 37, 85–96 (Russian) | MR | Zbl

[17] Kharlamov, M. P. and Yehia, H. M., “Separation of Variables in One Case of Motion of a Gyrostat in Two Constant Fields”, Mekh. Tverd. Tela, 2014, no. 44, 7–15 (Russian) | MR | Zbl

[18] Ryabov, P. E., “Algebraic Curves and Bifurcation Diagrams of Two Integrable Problems”, Mekh. Tverd. Tela, 2007, no. 37, 97–111 (Russian) | MR | Zbl

[19] Yehia, H. M., “On the Regular Precession of an Asymmetric Rigid Body Acted upon by Uniform Gravity and Magnetic Fields”, EJBAS, 2:3 (2015), 200–205

[20] Yehia, H. M., “Regular Precession of a Rigid Body (Gyrostat) Acted upon by an Irreducible Combination of Three Classical Fields”, J. Egypt. Math. Soc., 25:2 (2017), 216–219 | DOI | MR | Zbl

[21] Hussein, A. M., “Precessional Motion of a Rigid Body Acted upon by Three Irreducible Fields”, Russian J. Nonlinear Dyn., 15:3 (2019), 285–292 | MR | Zbl

[22] Maznev, A. V., “Precession-Isoconic Motions in One Solution of Kirchhoff Equations”, Visn. Donetsk. Univ. Ser. A, 2001, no. 2, 12–16 (Russian)