Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2023_19_2_a6, author = {G. V. Gorr}, title = {On a {Class} of {Precessions} of a {Rigid} {Body}}, journal = {Russian journal of nonlinear dynamics}, pages = {249--264}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2023_19_2_a6/} }
G. V. Gorr. On a Class of Precessions of a Rigid Body. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 2, pp. 249-264. http://geodesic.mathdoc.fr/item/ND_2023_19_2_a6/
[1] Ishlinsky, A., Orientation, gyroscopes et navigation par inertie: In 2 Vols., Mir, Moscow, 1984
[2] Klein, F. and Sommerfeld, A., Über die Theorie des Kreisels, Johnson, New York, 1965, 966 pp. | MR
[3] Grioli, G., “Esistenza e determinazione delle precessioni regolari dinamicamente possibili per un solido pesante asimmetrico”, Ann. Mat. Pura Appl. (4), 26:3–4 (1947), 271–281 | DOI | MR | Zbl
[4] Bressan, A., “Sulle precessioni d'un corpo rigido costituenti moti di Hess”, Rend. Semin. Mat. Univ. Padova, 27 (1957), 276–283 | MR | Zbl
[5] Dokshevich, A. I., Finite-Form Solutions of the Euler – Poisson Equations, Naukova Dumka, Kiev, 1992, 168 pp. (Russian) | MR
[6] Prikl. Mat. Mekh., 67:4 (2003), 573–587 (Russian) | DOI | MR | Zbl
[7] Gorr, G. V., Maznev, A. V., and Shchetinina, E. K., Precessional Motions in Rigid Body Dynamics and the Dynamics of Systems of Coupled Rigid Bodies, DonNU, Donetsk, 2009, 222 pp. (Russian)
[8] Gorr, G. V. and Maznev, A. V., Dynamics of a Gyrostat with a Fixed Point, DonNU, Donetsk, 2010, 364 pp. (Russian)
[9] Gorr, G. V., Maznev, A. V., and Kotov, G. A., Motion of a Gyrostat with Variable Gyrostatic Momentum, IPMM, Donetsk, 2018, 265 pp. (Russian)
[10] Prikl. Mat. Mekh., 82:5 (2018), 559–571 (Russian) | DOI | MR | Zbl
[11] Ol'shanskii, V. Yu., “New Cases of Regular Precession of an Asymmetric Liquid-Filled Rigid Body”, Celestial Mech. Dynam. Astronom., 131:12 (2019), 57, 19 pp. | DOI | MR | Zbl
[12] Prikl. Mat. Mekh., 85:5 (2021), 547–564 (Russian) | DOI | MR
[13] Kharlamov, P. V., “On the Equations of Motion of a System of Solids”, Mekh. Tverd. Tela, 1972, no. 4, 52–73 (Russian)
[14] Prikl. Mat. Mekh., 52:5 (1988), 707–712 (Russian) | DOI | MR | Zbl
[15] Kharlamov, M. P., “The Critical Set and the Bifurcation Diagram of the Problem of Motion of the Kowalevski Top in Double Field”, Mekh. Tverd. Tela, 2004, no. 34, 47–58 (Russian) | MR | Zbl
[16] Kharlamov, M. P., “Special Periodic Motions of the Kowalevski Gyrostat in Two Constant Fields”, Mekh. Tverd. Tela, 2007, no. 37, 85–96 (Russian) | MR | Zbl
[17] Kharlamov, M. P. and Yehia, H. M., “Separation of Variables in One Case of Motion of a Gyrostat in Two Constant Fields”, Mekh. Tverd. Tela, 2014, no. 44, 7–15 (Russian) | MR | Zbl
[18] Ryabov, P. E., “Algebraic Curves and Bifurcation Diagrams of Two Integrable Problems”, Mekh. Tverd. Tela, 2007, no. 37, 97–111 (Russian) | MR | Zbl
[19] Yehia, H. M., “On the Regular Precession of an Asymmetric Rigid Body Acted upon by Uniform Gravity and Magnetic Fields”, EJBAS, 2:3 (2015), 200–205
[20] Yehia, H. M., “Regular Precession of a Rigid Body (Gyrostat) Acted upon by an Irreducible Combination of Three Classical Fields”, J. Egypt. Math. Soc., 25:2 (2017), 216–219 | DOI | MR | Zbl
[21] Hussein, A. M., “Precessional Motion of a Rigid Body Acted upon by Three Irreducible Fields”, Russian J. Nonlinear Dyn., 15:3 (2019), 285–292 | MR | Zbl
[22] Maznev, A. V., “Precession-Isoconic Motions in One Solution of Kirchhoff Equations”, Visn. Donetsk. Univ. Ser. A, 2001, no. 2, 12–16 (Russian)