A Remark on Tonelli’s Calculus of Variations
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 2, pp. 239-248.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper provides a quite simple method of Tonelli’s calculus of variations with positive definite and superlinear Lagrangians. The result complements the classical literature of calculus of variations before Tonelli’s modern approach. Inspired by Euler’s spirit, the proposed method employs finite-dimensional approximation of the exact action functional, whose minimizer is easily found as a solution of Euler’s discretization of the exact Euler – Lagrange equation. The Euler – Cauchy polygonal line generated by the approximate minimizer converges to an exact smooth minimizing curve. This framework yields an elementary proof of the existence and regularity of minimizers within the family of smooth curves and hence, with a minor additional step, within the family of Lipschitz curves, without using modern functional analysis on absolutely continuous curves and lower semicontinuity of action functionals.
Keywords: direct method, action minimizing, minimizing curve, regularity of minimizer, Euler method
Mots-clés : Tonelli’s calculus of variations, Euler – Cauchy polygon.
@article{ND_2023_19_2_a5,
     author = {K. Soga},
     title = {A {Remark} on {Tonelli{\textquoteright}s} {Calculus} of {Variations}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {239--248},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_2_a5/}
}
TY  - JOUR
AU  - K. Soga
TI  - A Remark on Tonelli’s Calculus of Variations
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 239
EP  - 248
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_2_a5/
LA  - en
ID  - ND_2023_19_2_a5
ER  - 
%0 Journal Article
%A K. Soga
%T A Remark on Tonelli’s Calculus of Variations
%J Russian journal of nonlinear dynamics
%D 2023
%P 239-248
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_2_a5/
%G en
%F ND_2023_19_2_a5
K. Soga. A Remark on Tonelli’s Calculus of Variations. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 2, pp. 239-248. http://geodesic.mathdoc.fr/item/ND_2023_19_2_a5/

[1] Buttazzo, G., Giaquinta, M., and Hildebrandt, S., One-Dimensional Variational Problems: An Introduction, Oxford Lecture Ser. Math. Appl., 15, Oxford Univ. Press, New York, 1998, viii+262 pp. | MR | Zbl

[2] Cannarsa, P. and Sinestrari, C., Semiconcave Functions, Hamilton – Jacobi Equations, and Optimal Control, Prog. Nonlinear Differ. Equ. Their Appl., 58, Birkhäuser, Boston, Mass., 2004, xiv+304 pp. | MR | Zbl

[3] Clarke, F. H., “Tonelli's Regurarity Theory in the Calculus of Variations: Recent Progress”, Optimization and Related Fields, Lecture Notes in Math., 1190, eds. R. Conti, E. De Giorgi, F. Giannessi, Springer, Berlin, 1986, 163–179 | DOI | MR

[4] Fathi, A., Weak KAM Theorem in Lagrangian Dynamics: Preliminary Version Number $10$, Lyon, Version $15$, 2008

[5] Goldstine, H. H., A History of the Calculus of Variations from the 17th through the 19th Century, Stud. History Math. Phys. Sci., 5, Springer, New York, 1980, xviii+410 pp. | DOI | MR | Zbl

[6] Mather, J., “Action Minimizing Invariant Measures for Positive Definite Lagrangian Systems”, Math. Z., 207:2 (1991), 169–207 | DOI | MR | Zbl

[7] Soga, K., “Stochastic and Variational Approach to Finite Difference Approximation of Hamilton – Jacobi Equations”, Math. Comp., 89:323 (2020), 1135–1159 | DOI | MR | Zbl