Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2023_19_2_a5, author = {K. Soga}, title = {A {Remark} on {Tonelli{\textquoteright}s} {Calculus} of {Variations}}, journal = {Russian journal of nonlinear dynamics}, pages = {239--248}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2023_19_2_a5/} }
K. Soga. A Remark on Tonelli’s Calculus of Variations. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 2, pp. 239-248. http://geodesic.mathdoc.fr/item/ND_2023_19_2_a5/
[1] Buttazzo, G., Giaquinta, M., and Hildebrandt, S., One-Dimensional Variational Problems: An Introduction, Oxford Lecture Ser. Math. Appl., 15, Oxford Univ. Press, New York, 1998, viii+262 pp. | MR | Zbl
[2] Cannarsa, P. and Sinestrari, C., Semiconcave Functions, Hamilton – Jacobi Equations, and Optimal Control, Prog. Nonlinear Differ. Equ. Their Appl., 58, Birkhäuser, Boston, Mass., 2004, xiv+304 pp. | MR | Zbl
[3] Clarke, F. H., “Tonelli's Regurarity Theory in the Calculus of Variations: Recent Progress”, Optimization and Related Fields, Lecture Notes in Math., 1190, eds. R. Conti, E. De Giorgi, F. Giannessi, Springer, Berlin, 1986, 163–179 | DOI | MR
[4] Fathi, A., Weak KAM Theorem in Lagrangian Dynamics: Preliminary Version Number $10$, Lyon, Version $15$, 2008
[5] Goldstine, H. H., A History of the Calculus of Variations from the 17th through the 19th Century, Stud. History Math. Phys. Sci., 5, Springer, New York, 1980, xviii+410 pp. | DOI | MR | Zbl
[6] Mather, J., “Action Minimizing Invariant Measures for Positive Definite Lagrangian Systems”, Math. Z., 207:2 (1991), 169–207 | DOI | MR | Zbl
[7] Soga, K., “Stochastic and Variational Approach to Finite Difference Approximation of Hamilton – Jacobi Equations”, Math. Comp., 89:323 (2020), 1135–1159 | DOI | MR | Zbl