Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2023_19_2_a4, author = {V. S. Medvedev and E. V. Zhuzhoma}, title = {On a {Classification} of {Chaotic} {Laminations} which are {Nontrivial} {Basic} {Sets} of {Axiom} {A} {Flows}}, journal = {Russian journal of nonlinear dynamics}, pages = {227--237}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2023_19_2_a4/} }
TY - JOUR AU - V. S. Medvedev AU - E. V. Zhuzhoma TI - On a Classification of Chaotic Laminations which are Nontrivial Basic Sets of Axiom A Flows JO - Russian journal of nonlinear dynamics PY - 2023 SP - 227 EP - 237 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2023_19_2_a4/ LA - en ID - ND_2023_19_2_a4 ER -
%0 Journal Article %A V. S. Medvedev %A E. V. Zhuzhoma %T On a Classification of Chaotic Laminations which are Nontrivial Basic Sets of Axiom A Flows %J Russian journal of nonlinear dynamics %D 2023 %P 227-237 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2023_19_2_a4/ %G en %F ND_2023_19_2_a4
V. S. Medvedev; E. V. Zhuzhoma. On a Classification of Chaotic Laminations which are Nontrivial Basic Sets of Axiom A Flows. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 2, pp. 227-237. http://geodesic.mathdoc.fr/item/ND_2023_19_2_a4/
[1] Tr. Mat. Inst. Steklova, 90 (1967), 3–210 (Russian) | MR | MR
[2] Tr. Mat. Inst. Steklova, 249 (2005), 3–239 (Russian) | MR | MR
[3] Aranson, S. Kh., Belitsky, G. R., and Zhuzhoma, E. V., Introduction to the Qualitative Theory of Dynamical Systems on Surfaces, Transl. Math. Monogr., 153, AMS, Providence, R.I., 1996, xiv+325 pp. | MR | Zbl
[4] Aranson, S. Kh. and Zhuzhoma, E. V., “On the Classification of Codimension-One Attractors without Mixing”, Selecta Math. Soviet., 11:4 (1992), 327–332 | MR
[5] Banks, J., Brooks, J., Cairns, G., Davis, G., and Stacey, P., “On Devaney's Definition of Chaos”, Amer. Math. Monthly, 99:4 (1992), 332–334 | DOI | MR | Zbl
[6] Bazaikin, Ya. V., Galaev, A. S., and Zhukova, N. I., “Chaos in Cartan Foliations”, Chaos, 30:10 (2020), 103116, 9 pp. | DOI | MR | Zbl
[7] Bowen, R., “Periodic Orbits for Hyperbolic Flows”, Amer. J. Math., 94:1 (1972), 1–30 | DOI | MR | Zbl
[8] Candel, A. and Conlon, L., Foliations: 1, Grad. Stud. Math., 23, AMS, Providence, R.I., 2000, xiv+402 pp. | MR
[9] Churchill, R. C., “On Defining Chaos in the Absence of Time”, Deterministic Chaos in General Relativity (Kananaskis, AB, 1993), NATO Adv. Sci. Inst. Ser. B Phys. Sci., 332, eds. D. Hobill, A. Burd, A. Coley, Plenum, New York, 1994, 107–112 | MR
[10] Devaney, R. L., An Introduction to Chaotic Dynamical Systems, 2nd ed., Addison-Wesley, New York, 1989, 336 pp. | MR | Zbl
[11] Franks, J., “Anosov Diffeomorphisms”, Global Analysis: Proc. Sympos. Pure Math. (Berkeley, Calif., 1968), v. 14, AMS, Providence, R.I., 1970, 61–93 | DOI | MR
[12] Franks, J. and Williams, B., “Anomalous Anosov Flows”, Global Theory of Dynamical Systems: Proc. Internat. Conf. (Northwestern Univ., Evanston, Ill., 1979), Lecture Notes in Math., 819, Springer, Berlin, 1980, 158–174 | DOI | MR
[13] Fried, D., “The Geometry of Cross Sections to Flows”, Topology, 21:4 (1982), 353–371 | DOI | MR | Zbl
[14] Ghys, E. and Sergiescu, V., “Stabilité et conjugaison différentiable pour certains feuilletages”, Topology, 19:2 (1980), 179–197 | DOI | MR | Zbl
[15] Trudy Moskov. Mat. Obsc., 34 (1977), 243–252 (Russian) | MR | Zbl | Zbl
[16] Grines, V. Z., “On Topological Classification of $A$-Diffeomorphisms of Surfaces”, J. Dynam. Control Systems, 6:1 (2000), 97–126 | DOI | MR | Zbl
[17] Uspekhi Mat. Nauk, 74:1 (445) (2019), 41–116 (Russian) | DOI | DOI | MR | Zbl
[18] Grines, V. and Zhuzhoma, E., “On Structurally Stable Diffeomorphisms with Codimension One Expanding Attractors”, Trans. Amer. Math. Soc., 357:2 (2005), 617–667 | DOI | MR | Zbl
[19] Grines, V. and Zhuzhoma, E., Surface Laminaions and Chaotic Dynamical Systems, R Dynamics, Institute of Computer Science, Izhevsk, 2021, 502 pp.
[20] Hayashi, Sh., “Connecting Invariant Manifolds and the Solution of the $C^1$ Stability and $\Omega$-Stability Conjectures for Flows”, Ann. of Math. (2), 145:1 (1997), 81–137 | DOI | MR | Zbl
[21] Hayashi, Sh., “Correction to: "Connecting Invariant Manifolds and the Solution of the $C^1$ Stability and $\Omega$-Stability Conjectures for Flows" [Ann. of Math. (2), 1997, vol. 145, no. 1, pp. 81–137]”, Ann. of Math. (2), 150:1 (1999), 353–356 | DOI | MR | Zbl
[22] Hirsch, M., Palis, J., Pugh, C., and Shub, M., “Neighborhoods of Hyperbolic Sets”, Invent. Math., 9 (1969/70), 121–134 | DOI | MR
[23] Hirsch, M. W., Pugh, C. C., and Shub, M., Invariant Manifolds, Lecture Notes in Math., 583, Springer, New York, 1977, ii+149 pp. | DOI | MR | Zbl
[24] Ikegami, G., “On Classification of Dynamical Systems with Cross-Sections”, Osaka Math. J., 6 (1969), 419–433 | MR | Zbl
[25] Medvedev, V. S. and Zhuzhoma, E. V., “Two-Dimensional Attractors of $A$-Flows and Fibered Links on Three-Manifolds”, Nonlinearity, 35:5 (2022), 2192–2205 | DOI | MR | Zbl
[26] Moise, E. E., Geometric Topology in Dimensions $2$ and $3$, Grad. Texts Math., 47, Springer, New York, 1977, x+262 pp. | DOI | MR | Zbl
[27] Nikolaev, I., Foliations on Surfaces, Springer, Berlin, 2001, xxvi+450 pp. | MR | Zbl
[28] Nikolaev, I. and Zhuzhoma, E., Flows on $2$-Dimensional Manifolds: An Overview, Lect. Notes in Math., 1705, Springer, Berlin, 1999, xx+294 pp. | DOI | MR | Zbl
[29] Uspekhi Mat. Nauk, 39:6 (240) (1984), 75–113 (Russian) | DOI | MR | Zbl
[30] Robinson, C., Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, Stud. Adv. Math., 28, 2nd ed., CRC, Boca Raton, Fla., 1998, 520 pp. | MR
[31] Smale, S., “Differentiable Dynamical Systems”, Bull. Amer. Math. Soc. (NS), 73 (1967), 747–817 | DOI | MR | Zbl
[32] Zhirov, A. Yu., “Complete Combinatorial Invariants for Conjugacy of Hyperbolic Attractors of Diffeomorphisms of Surfaces”, J. Dynam. Control Systems, 6:3 (2000), 397–430 | DOI | MR | Zbl
[33] Zhirov, A. Yu., Topological Conjugacy of Pseudo-Anosov Homeomorphisms, MCNME, Moscow, 2013, 366 pp. (Russian)
[34] Mat. Zametki, 112:1 (2022), 138–142 (Russian) | DOI | DOI | MR | Zbl
[35] Mat. Zametki, 86:3 (2009), 360–370 (Russian) | DOI | DOI | MR | Zbl