Nonlinear Control of Tether Retrieval in an Elliptical Orbit
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 2, pp. 201-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

Tether retrieval is an important stage in many projects using space tether systems. It is known that uniform retrieval is an unstable process that leads to the winding of the tether on a satellite at the final stage of retraction. This is a serious obstacle to the practical application of space tethers in the tasks of climbing payloads to a satellite and docking the spacecraft with a tethered satellite after its capture. The paper investigates the plane motion of a space tether system with a massless tether of variable length in an elliptical orbit. A new control law that ensures the retrieval of the tether without increasing the amplitude of oscillations at the final stage is proposed. The asymptotic stability of the space tether system’s controlled motion in an elliptical orbit is proved. A numerical analysis of tether retrieval is carried out. The influence of the eccentricity of the orbit on the retrieval process is investigated. The results of the work can be useful in preparing missions of the active space debris removal and in performing operations involving tether retrieval.
Keywords: space tether system, retrieval, nonlinear, control law, tether.
@article{ND_2023_19_2_a2,
     author = {A. S. Ledkov and R. S. Pikalov},
     title = {Nonlinear {Control} of {Tether} {Retrieval} in an {Elliptical} {Orbit}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {201--218},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_2_a2/}
}
TY  - JOUR
AU  - A. S. Ledkov
AU  - R. S. Pikalov
TI  - Nonlinear Control of Tether Retrieval in an Elliptical Orbit
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 201
EP  - 218
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_2_a2/
LA  - en
ID  - ND_2023_19_2_a2
ER  - 
%0 Journal Article
%A A. S. Ledkov
%A R. S. Pikalov
%T Nonlinear Control of Tether Retrieval in an Elliptical Orbit
%J Russian journal of nonlinear dynamics
%D 2023
%P 201-218
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_2_a2/
%G en
%F ND_2023_19_2_a2
A. S. Ledkov; R. S. Pikalov. Nonlinear Control of Tether Retrieval in an Elliptical Orbit. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 2, pp. 201-218. http://geodesic.mathdoc.fr/item/ND_2023_19_2_a2/

[1] Cartmell, M. P. and McKenzie, D. J., “A Review of Space Tether Research”, Prog. Aerosp. Sci., 44:1 (2008), 1–21 | DOI

[2] Huang, P., Zhang, F., Chen, L., Meng, Z., Zhang, Y., Liu, Z., and Hu, Y., “A Review of Space Tether in New Applications”, Nonlinear Dyn., 94:1 (2018), 1–19 | DOI

[3] Chen, Y., Huang, R., He, L., Ren, X., and Zheng, D., “Dynamical Modelling and Control of Space Tethers: A Review of Space Tether Research”, Nonlinear Dyn., 77:4 (2014), 1077–1099 | DOI

[4] Yu, B. S., Wen, H., and Jin, D. P., “Review of Deployment Technology for Tethered Satellite Systems”, Acta Mech. Sin., 34:4 (2018), 754–768 | DOI

[5] Bekey, I. and Penzo, P. A., “Tether Propulsion”, Aerosp. Am., 24:7 (1986), 40–43

[6] Pikalov, R. S., “Strategy for the Realization of Soft Docking with Space Debris by Using a Tether System”, J. Phys. Conf. Ser., 1368:4 (2019), 042026, 5 pp. | DOI

[7] Trushlyakov, V. I., Yudintsev, V. V., and Onishchuk, S. Yu., “Risks of Docking and Nulling of the Kinetic Moment of an Uncooperative Large-Sized Space Debris”, J. Space Saf. Eng., 9:4 (2022), 523–527 | DOI

[8] Mayorova, V. I., Shcheglov, G. A., and Stognii, M. V., “Analysis of the Space Debris Objects Nozzle Capture Dynamic Processed by a Telescopic Robotic Arm”, Acta Astronaut., 187 (2021), 259–270 | DOI

[9] Sizov, D. A. and Aslanov, V. S., “Space Debris Removal with Harpoon Assistance: Choice of Parameters and Optimization”, J. Guid. Control Dyn., 44:4 (2020), 767–778 | DOI

[10] Barnes, C. M. and Botta, E. M., “A Quality Index for Net-Based Capture of Space Debris”, Acta Astronaut., 176 (2020), 455–463 | DOI

[11] Xu, D. M., Misra A. K., and Modi, V. J., “Thruster-Augmented Active Control of a Tethered Subsatellite System during Its Retrieval”, J. Guid. Control Dyn., 9:6 (1986), 663–672 | DOI

[12] Netzer, E. and Kane, T. R., “Deployment and Retrieval Optimization of a Tethered Satellite System”, J. Guid. Control Dyn., 16:6 (1993), 1085–1091 | DOI

[13] Yingying, L., Jun, Z., and Huanlong, C., “Variable Structure Control for Tethered Satellite Fast Deployment and Retrieval”, Future Control and Automation, Lect. Notes Electr. Eng., 172, ed. W. Deng, Springer, Berlin, 2012, 157–164 | DOI

[14] Fujii, H. and Ishijima, S., “Mission-Function Control for Slew Maneuver of a Flexible Space Structure”, J. Guid. Control Dyn., 12:6 (1989), 858–865 | DOI | MR

[15] Kokubun, K. and Fujii, H. A., “Deployment/Retrieval Control of a Tethered Subsatellite under Effect of Tether Elasticity”, J. Guid. Control Dyn., 19:1 (1996), 84–90 | DOI | MR | Zbl

[16] Pradeep, S., “Tension Control of Tethered Satellites”, AIAA/AAS Astrodynamics Specialsist Conference and Exhibit (Boston, Mass., 1998), 44–75 | MR

[17] Kumar, K., Pradeep, S., and Vidya, G., “Optimization of Control Gains for Three Dimensional Retrieval Dynamics of Tethered Satellites”, Proc. of the 7th AIAA/USAF/NASA/ISSMO Symp. on Multidisciplinary Analysis and Optimization (St. Louis, Mo., 1998), 49–78 | Zbl

[18] Djebli, A., Pascal, M., and El Bakkali, L., “Laws of Deployment/Retrieval in Tether Connected Satellites Systems”, Acta Astronaut., 45:2 (1999), 61–73 | DOI

[19] Djebli, A., El Bakkali, L., and Pascal, M., “On Fast Retrieval Laws for Tethered Satellite Systems”, Acta Astronaut., 50:8 (2002), 461–470 | DOI

[20] Sun, G. and Zhu, Z. H., “Fractional Order Tension Control for Stable and Fast Tethered Satellite Retrieval”, Acta Astronaut., 104:1 (2014), 304–312 | DOI

[21] Prikl. Mat. Mekh., 59:2 (1995), 179–187 (Russian) | DOI | MR | Zbl

[22] Kalashnikov, L. M., Malyshev, G. V., and Svotin, A. P., “The Control of Two-Module Space Rope System Rolling”, Probl. Upr., 2003, no. 4, 63–66 (Russian)

[23] Kosmicheskie Issledovaniya, 55:3 (2017), 236–246 (Russian) | DOI

[24] Aslanov, V. S. and Pikalov, R. S., “Rendezvous of Non-Cooperative Spacecraft and Tug Using a Tether System”, Eng. Lett., 25:2 (2017), 142–146 | MR

[25] Zhong, R. and Zhu, Z. H., “Dynamic Analysis of Deployment and Retrieval of Tethered Satellites Using a Hybrid Hinged-Rod Tether Model”, IJALS, 1:2 (2011), 239–259 | DOI | MR

[26] Zhang, F. and Huang, P., “Segmented Control for Retrieval of Space Debris after Captured by Tethered Space Robot”, IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (Hamburg, Germany, 2015), 5454–5459

[27] Zhang, F. and Huang, P., “A Novel Underactuated Control Scheme for Deployment/Retrieval of Space Tethered System”, Nonlinear Dyn., 95:4 (2019), 3465–3476 | DOI | Zbl

[28] Vadali, S. R., “Feedback Tether Deployment and Retrieval”, J. Guid. Control Dyn., 14:2 (1991), 469–470 | DOI

[29] Kim, E. and Vadali, S. R., “Nonlinear Feedback Deployment and Retrieval of Tethered Satellite Systems”, J. Guid. Control Dyn., 15:1 (1992), 28–34 | DOI

[30] Ma, Z. and Sun, G., “Full-Order Sliding Mode Control for Deployment/Retrieval of Space Tether System”, IEEE Internat. Conf. on Systems, Man, and Cybernetics (SMC, Budapest, Hungary, Oct 2016), 407–412

[31] Kang, J. and Zhu, Z. H., “Hamiltonian Formulation and Energy-Based Control for Space Tethered System Deployment and Retrieval”, Trans. Can. Soc. Mech. Eng., 43:4 (2019), 463–470 | DOI

[32] Fujii, H. A. and Kojima, H., “Optimal Trajectory Analysis for Deployment/Retrieval of Tethered Subsatellite Using Metric”, J. Guid. Control Dyn., 26:1 (2003), 177–179 | DOI

[33] Lakso, J. and Coverstone, V., “Optimal Tether Deployment/Retrieval Trajectories Using Direct Collocation”, Astrodynamics Specialist Conf. (Denver, Colo., Aug 2000), 43–49

[34] Steindl, A., Steiner, W., and Troger, H., “Optimal Control of Retrieval of a Tethered Subsatellite”, IUTAM Symp. on Chaotic Dynamics and Control of Systems and Processes in Mechanics (Dordrecht, The Netherlands, 2005), 441–450 | MR

[35] Steindl, A. and Troger, H., “Optimal Control of Deployment of a Tethered Subsatellite”, Nonlinear Dyn., 31:3 (2003), 257–274 | DOI | MR | Zbl

[36] Steindl, A., “Optimal Control of the Deployment (and Retrieval) of a Tethered Satellite under Small Initial Disturbances”, Meccanica, 49:8 (2014), 1879–1885 | DOI | MR | Zbl

[37] Ohtsuka, T., “Nonlinear Optimal Feedback Control for Deployment/Retrieval of a Tethered Satellite”, Trans. Jpn. Soc. Aeronaut. Space Sci., 43:142 (2001), 165–173 | DOI

[38] Williams, P., “Deployment/Retrieval Optimization for Flexible Tethered Satellite Systems”, Nonlinear Dyn., 52:1 (2008), 159–179 | DOI | Zbl

[39] Yu, B. S. and Jin, D. P., “Deployment and Retrieval of Tethered Satellite System under J2 Perturbation and Heating Effect”, Acta Astronaut., 67:7–8 (2010), 845–853

[40] Razoumny, Yu. N., Kupreev, S. A., and Misra, A. K., “The Research Method of Controlled Movement Dynamics of Tether System”, Proc. of the 1st IAA/AAS SciTech Forum on Space Flight Mechanics and Space Structures and Materials (Moscow, Russia, Nov 2018), Adv. Astronaut. Sci., 170, eds. Yu. N. Razoumny, F. Graziani, A. D. Guerman, J.-M. Contant, Univelt, San Diego, Calif., 2020, 417–431, 1054 pp.

[41] Pang, Z., Wen, H., Rui, X., and Du, Z., “Nonlinear Resonant Analysis of Space Tethered Satellite System in Elliptical Orbits”, Acta Astronaut., 182 (2021), 264–273 | DOI

[42] Souza dos Santos, D. P., Da Rocha e Brito de Aguiã Morant, S. A., Guerman, A. D., and Burov, A. A., “Stability Solutions of a Dumbbell-Like System in an Elliptical Orbit”, J. Phys. Conf. Ser., 641:1 (2015), 012004, 7 pp. | DOI

[43] Wang, C. Wang, P. Li, A., and Guo, Y., “Deployment of Tethered Satellites in Low-Eccentricity Orbits Using Adaptive Sliding Mode Control”, J. Aerosp. Eng., 30:6 (2017), 04017077 | DOI

[44] Malkin, I. G., Theory of Stability of Motion, U.S. Atomic Energy Commission, Washington, D.C., 1952, 456 pp.