Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2023_19_2_a2, author = {A. S. Ledkov and R. S. Pikalov}, title = {Nonlinear {Control} of {Tether} {Retrieval} in an {Elliptical} {Orbit}}, journal = {Russian journal of nonlinear dynamics}, pages = {201--218}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2023_19_2_a2/} }
A. S. Ledkov; R. S. Pikalov. Nonlinear Control of Tether Retrieval in an Elliptical Orbit. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 2, pp. 201-218. http://geodesic.mathdoc.fr/item/ND_2023_19_2_a2/
[1] Cartmell, M. P. and McKenzie, D. J., “A Review of Space Tether Research”, Prog. Aerosp. Sci., 44:1 (2008), 1–21 | DOI
[2] Huang, P., Zhang, F., Chen, L., Meng, Z., Zhang, Y., Liu, Z., and Hu, Y., “A Review of Space Tether in New Applications”, Nonlinear Dyn., 94:1 (2018), 1–19 | DOI
[3] Chen, Y., Huang, R., He, L., Ren, X., and Zheng, D., “Dynamical Modelling and Control of Space Tethers: A Review of Space Tether Research”, Nonlinear Dyn., 77:4 (2014), 1077–1099 | DOI
[4] Yu, B. S., Wen, H., and Jin, D. P., “Review of Deployment Technology for Tethered Satellite Systems”, Acta Mech. Sin., 34:4 (2018), 754–768 | DOI
[5] Bekey, I. and Penzo, P. A., “Tether Propulsion”, Aerosp. Am., 24:7 (1986), 40–43
[6] Pikalov, R. S., “Strategy for the Realization of Soft Docking with Space Debris by Using a Tether System”, J. Phys. Conf. Ser., 1368:4 (2019), 042026, 5 pp. | DOI
[7] Trushlyakov, V. I., Yudintsev, V. V., and Onishchuk, S. Yu., “Risks of Docking and Nulling of the Kinetic Moment of an Uncooperative Large-Sized Space Debris”, J. Space Saf. Eng., 9:4 (2022), 523–527 | DOI
[8] Mayorova, V. I., Shcheglov, G. A., and Stognii, M. V., “Analysis of the Space Debris Objects Nozzle Capture Dynamic Processed by a Telescopic Robotic Arm”, Acta Astronaut., 187 (2021), 259–270 | DOI
[9] Sizov, D. A. and Aslanov, V. S., “Space Debris Removal with Harpoon Assistance: Choice of Parameters and Optimization”, J. Guid. Control Dyn., 44:4 (2020), 767–778 | DOI
[10] Barnes, C. M. and Botta, E. M., “A Quality Index for Net-Based Capture of Space Debris”, Acta Astronaut., 176 (2020), 455–463 | DOI
[11] Xu, D. M., Misra A. K., and Modi, V. J., “Thruster-Augmented Active Control of a Tethered Subsatellite System during Its Retrieval”, J. Guid. Control Dyn., 9:6 (1986), 663–672 | DOI
[12] Netzer, E. and Kane, T. R., “Deployment and Retrieval Optimization of a Tethered Satellite System”, J. Guid. Control Dyn., 16:6 (1993), 1085–1091 | DOI
[13] Yingying, L., Jun, Z., and Huanlong, C., “Variable Structure Control for Tethered Satellite Fast Deployment and Retrieval”, Future Control and Automation, Lect. Notes Electr. Eng., 172, ed. W. Deng, Springer, Berlin, 2012, 157–164 | DOI
[14] Fujii, H. and Ishijima, S., “Mission-Function Control for Slew Maneuver of a Flexible Space Structure”, J. Guid. Control Dyn., 12:6 (1989), 858–865 | DOI | MR
[15] Kokubun, K. and Fujii, H. A., “Deployment/Retrieval Control of a Tethered Subsatellite under Effect of Tether Elasticity”, J. Guid. Control Dyn., 19:1 (1996), 84–90 | DOI | MR | Zbl
[16] Pradeep, S., “Tension Control of Tethered Satellites”, AIAA/AAS Astrodynamics Specialsist Conference and Exhibit (Boston, Mass., 1998), 44–75 | MR
[17] Kumar, K., Pradeep, S., and Vidya, G., “Optimization of Control Gains for Three Dimensional Retrieval Dynamics of Tethered Satellites”, Proc. of the 7th AIAA/USAF/NASA/ISSMO Symp. on Multidisciplinary Analysis and Optimization (St. Louis, Mo., 1998), 49–78 | Zbl
[18] Djebli, A., Pascal, M., and El Bakkali, L., “Laws of Deployment/Retrieval in Tether Connected Satellites Systems”, Acta Astronaut., 45:2 (1999), 61–73 | DOI
[19] Djebli, A., El Bakkali, L., and Pascal, M., “On Fast Retrieval Laws for Tethered Satellite Systems”, Acta Astronaut., 50:8 (2002), 461–470 | DOI
[20] Sun, G. and Zhu, Z. H., “Fractional Order Tension Control for Stable and Fast Tethered Satellite Retrieval”, Acta Astronaut., 104:1 (2014), 304–312 | DOI
[21] Prikl. Mat. Mekh., 59:2 (1995), 179–187 (Russian) | DOI | MR | Zbl
[22] Kalashnikov, L. M., Malyshev, G. V., and Svotin, A. P., “The Control of Two-Module Space Rope System Rolling”, Probl. Upr., 2003, no. 4, 63–66 (Russian)
[23] Kosmicheskie Issledovaniya, 55:3 (2017), 236–246 (Russian) | DOI
[24] Aslanov, V. S. and Pikalov, R. S., “Rendezvous of Non-Cooperative Spacecraft and Tug Using a Tether System”, Eng. Lett., 25:2 (2017), 142–146 | MR
[25] Zhong, R. and Zhu, Z. H., “Dynamic Analysis of Deployment and Retrieval of Tethered Satellites Using a Hybrid Hinged-Rod Tether Model”, IJALS, 1:2 (2011), 239–259 | DOI | MR
[26] Zhang, F. and Huang, P., “Segmented Control for Retrieval of Space Debris after Captured by Tethered Space Robot”, IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (Hamburg, Germany, 2015), 5454–5459
[27] Zhang, F. and Huang, P., “A Novel Underactuated Control Scheme for Deployment/Retrieval of Space Tethered System”, Nonlinear Dyn., 95:4 (2019), 3465–3476 | DOI | Zbl
[28] Vadali, S. R., “Feedback Tether Deployment and Retrieval”, J. Guid. Control Dyn., 14:2 (1991), 469–470 | DOI
[29] Kim, E. and Vadali, S. R., “Nonlinear Feedback Deployment and Retrieval of Tethered Satellite Systems”, J. Guid. Control Dyn., 15:1 (1992), 28–34 | DOI
[30] Ma, Z. and Sun, G., “Full-Order Sliding Mode Control for Deployment/Retrieval of Space Tether System”, IEEE Internat. Conf. on Systems, Man, and Cybernetics (SMC, Budapest, Hungary, Oct 2016), 407–412
[31] Kang, J. and Zhu, Z. H., “Hamiltonian Formulation and Energy-Based Control for Space Tethered System Deployment and Retrieval”, Trans. Can. Soc. Mech. Eng., 43:4 (2019), 463–470 | DOI
[32] Fujii, H. A. and Kojima, H., “Optimal Trajectory Analysis for Deployment/Retrieval of Tethered Subsatellite Using Metric”, J. Guid. Control Dyn., 26:1 (2003), 177–179 | DOI
[33] Lakso, J. and Coverstone, V., “Optimal Tether Deployment/Retrieval Trajectories Using Direct Collocation”, Astrodynamics Specialist Conf. (Denver, Colo., Aug 2000), 43–49
[34] Steindl, A., Steiner, W., and Troger, H., “Optimal Control of Retrieval of a Tethered Subsatellite”, IUTAM Symp. on Chaotic Dynamics and Control of Systems and Processes in Mechanics (Dordrecht, The Netherlands, 2005), 441–450 | MR
[35] Steindl, A. and Troger, H., “Optimal Control of Deployment of a Tethered Subsatellite”, Nonlinear Dyn., 31:3 (2003), 257–274 | DOI | MR | Zbl
[36] Steindl, A., “Optimal Control of the Deployment (and Retrieval) of a Tethered Satellite under Small Initial Disturbances”, Meccanica, 49:8 (2014), 1879–1885 | DOI | MR | Zbl
[37] Ohtsuka, T., “Nonlinear Optimal Feedback Control for Deployment/Retrieval of a Tethered Satellite”, Trans. Jpn. Soc. Aeronaut. Space Sci., 43:142 (2001), 165–173 | DOI
[38] Williams, P., “Deployment/Retrieval Optimization for Flexible Tethered Satellite Systems”, Nonlinear Dyn., 52:1 (2008), 159–179 | DOI | Zbl
[39] Yu, B. S. and Jin, D. P., “Deployment and Retrieval of Tethered Satellite System under J2 Perturbation and Heating Effect”, Acta Astronaut., 67:7–8 (2010), 845–853
[40] Razoumny, Yu. N., Kupreev, S. A., and Misra, A. K., “The Research Method of Controlled Movement Dynamics of Tether System”, Proc. of the 1st IAA/AAS SciTech Forum on Space Flight Mechanics and Space Structures and Materials (Moscow, Russia, Nov 2018), Adv. Astronaut. Sci., 170, eds. Yu. N. Razoumny, F. Graziani, A. D. Guerman, J.-M. Contant, Univelt, San Diego, Calif., 2020, 417–431, 1054 pp.
[41] Pang, Z., Wen, H., Rui, X., and Du, Z., “Nonlinear Resonant Analysis of Space Tethered Satellite System in Elliptical Orbits”, Acta Astronaut., 182 (2021), 264–273 | DOI
[42] Souza dos Santos, D. P., Da Rocha e Brito de Aguiã Morant, S. A., Guerman, A. D., and Burov, A. A., “Stability Solutions of a Dumbbell-Like System in an Elliptical Orbit”, J. Phys. Conf. Ser., 641:1 (2015), 012004, 7 pp. | DOI
[43] Wang, C. Wang, P. Li, A., and Guo, Y., “Deployment of Tethered Satellites in Low-Eccentricity Orbits Using Adaptive Sliding Mode Control”, J. Aerosp. Eng., 30:6 (2017), 04017077 | DOI
[44] Malkin, I. G., Theory of Stability of Motion, U.S. Atomic Energy Commission, Washington, D.C., 1952, 456 pp.