An Inhomogeneous Steady-State Convection
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 2, pp. 167-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

An exact solution of the Oberbeck – Boussinesq equations for the description of the steady- state Bénard – Rayleigh convection in an infinitely extensive horizontal layer is presented. This exact solution describes the large-scale motion of a vertical vortex flow outside the field of the Coriolis force. The large-scale fluid flow is considered in the approximation of a thin layer with nondeformable (flat) boundaries. This assumption allows us to describe the large-scale fluid motion as shear motion. Two velocity vector components, called horizontal components, are taken into account. Consequently, the third component of the velocity vector (the vertical velocity) is zero. The shear flow of the vertical vortex flow is described by linear forms from the horizontal coordinates for velocity, temperature and pressure fields. The topology of the steady flow of a viscous incompressible fluid is defined by coefficients of linear forms which have a dependence on the vertical (transverse) coordinate. The functions unknown in advance are exactly defined from the system of ordinary differential equations of order fifteen. The coefficients of the forms are polynomials. The spectral properties of the polynomials in the domain of definition of the solution are investigated. The analysis of distribution of the zeroes of hydrodynamical fields has allowed a definition of the stratification of the physical fields. The paper presents a detailed study of the existence of steady reverse flows in the convective fluid flow of Bénard – Rayleigh – Couette type.
Keywords: shear flow, inhomogeneous flow, Oberbeck – Boussinesq system, class of Lin – Sidorov – Aristov solutions, vertical swirl of fluid, reverse flow
Mots-clés : exact solution, convection, strati- fication.
@article{ND_2023_19_2_a0,
     author = {S. A. Berestova and E. Yu. Prosviryakov},
     title = {An {Inhomogeneous} {Steady-State} {Convection}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {167--186},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_2_a0/}
}
TY  - JOUR
AU  - S. A. Berestova
AU  - E. Yu. Prosviryakov
TI  - An Inhomogeneous Steady-State Convection
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 167
EP  - 186
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_2_a0/
LA  - en
ID  - ND_2023_19_2_a0
ER  - 
%0 Journal Article
%A S. A. Berestova
%A E. Yu. Prosviryakov
%T An Inhomogeneous Steady-State Convection
%J Russian journal of nonlinear dynamics
%D 2023
%P 167-186
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_2_a0/
%G en
%F ND_2023_19_2_a0
S. A. Berestova; E. Yu. Prosviryakov. An Inhomogeneous Steady-State Convection. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 2, pp. 167-186. http://geodesic.mathdoc.fr/item/ND_2023_19_2_a0/

[1] Landau, L. D. and Lifshitz, E. M., Course of Theoretical Physics: In 10 Vols., v. 6, Fluid Mechanics, 2nd ed., Butterworth-Heinemann, Oxford, 2003, 552 pp. | MR

[2] Gershuni, G. Z. and Zhukhovitskii, E. M., Convective Stability of Incompressible Liquid, Wiley, Jerusalem, 1976, 330 pp.

[3] Levich, V. G., Physicochemical Hydrodynamics, Prentice Hall, Englewood Cliffs, N.J., 1962, 700 pp.

[4] Euler, L., “Principia motus fluidorum”, Novi Commentarii Academiæ Scientiarum Petropolitanæ, 6 (1761), 271–371; Opera Omnia, Ser. 2, 12, 133–168

[5] Neményi, P. F., “Recent Developments in Inverse and Semi-Inverse Methods in the Mechanics of Continua”, Advances in Applied Mechanics, v. 2, eds. R. von Mises, Th. von Kármán, Acad. Press, New York, 1951, 123–151 | DOI | MR

[6] Navier, C. L. M. H., “Mémoire sur les lois du mouvement des fluides”, Mémoires de l'Académie Royale des Sciences de l'Institut de France, 6 (1827), 389–440

[7] Poisson, S. D., “Mémoire sur les équations générales de l'équilibre et du mouvement des corps solides élastiques et des fluid”, J. l'École Polytechnique, 13 (1831), 139–186

[8] Saint-Venant, B., “Note à joindre au Mémoire sur la dynamique des fluides”, C. R. Acad. Sci. Paris, 17 (1843), 1240–1244

[9] Stokes, G. G., “On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Solids”, Mathematical and Physical Papers, v. 1, Cambridge Univ. Press, Cambridge, 2009, 75–129 ; Trans. Cambridge Philos. Soc., 8 (1880), 287–319 | DOI

[10] Drazin, P. G. and Riley, N., The Navier – Stokes Equations: A Classification of Flows and Exact Solutions, London Math. Soc. Lect. Note Ser., 334, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl

[11] Ershkov, S. V., Prosviryakov, E. Yu., Burmasheva, N. V., and Christianto, V., “Towards Understanding the Algorithms for Solving the Navier – Stokes Equations”, Fluid Dyn. Res., 53:4 (2021), 044501, 18 pp. | DOI | MR

[12] Fefferman, Ch. L., Existence and Smoothness of the Navier – Stokes Equation, Clay Mathematics Institute, Cambridge, Mass., 2000, 5 pp.

[13] Fefferman, Ch. L., “Existence and Smoothness of the Navier – Stokes Equation”, The Millennium Prize Problems, Clay Mathematics Institute, Cambridge, Mass., 2006, 57–67 | MR | Zbl

[14] Uspekhi Mat. Nauk, 58:2 (2003), 45–78 (Russian) | DOI | DOI | MR | Zbl

[15] Uspekhi Mat. Nauk, 59:3 (2004), 157–158 (Russian) | DOI | DOI | MR | Zbl

[16] Arnold, M. D., Bakhtin, Yu. Yu., and Dinaburg, E. I., “Regularity of Solutions to Vorticity Navier – Stokes System on $\mathbb{R}^2$”, Commun. Math. Phys., 258:2 (2005), 339–348 | DOI | MR | Zbl

[17] Cao, Ch. and Titi, E. S., “Regularity Criteria for the Three-Dimensional Navier – Stokes Equations”, Indiana Univ. Math. J., 57:6 (2008), 2643–2661 | DOI | MR | Zbl

[18] Cao, Ch., “Sufficient Conditions for the Regularity to the 3D Navier – Stokes Equations”, Discrete Contin. Dyn. Syst., 26:4 (2010), 1141–1151 | DOI | MR | Zbl

[19] Wang, Sh., “On a New 3D Model for Incompressible Euler and Navier – Stokes Equations”, Acta Math. Sci., 30:6 (2010), 2089–2102 | DOI | MR | Zbl

[20] Cao, Ch. and Titi, E. S., “Global Regularity Criterion for the 3D Navier – Stokes Equations Involving One Entry of the Velocity Gradient Tensor”, Arch. Ration. Mech. Anal., 202:3 (2011), 919–932 | DOI | MR | Zbl

[21] Trudy Inst. Mat. i Mekh. UrO RAN, 18:2 (2012), 108–113 (Russian) | DOI | MR

[22] Fang, D. and Qian, Ch., “The Regularity Criterion for 3D Navier – Stokes Equations Involving One Velocity Gradient Component”, Nonlinear Anal. Theory Methods Appl., 78 (2013), 86–103 | DOI | MR | Zbl

[23] Zhirkin, A. V., “Existence and Properties of the Navier – Stokes Equations”, Cogent Math., 3 (2016), 1190308, 25 pp. | DOI | MR | Zbl

[24] Lemarie-Rieusset, P. G., The Navier – Stokes Problem in the 21st Century, Chapman Hall/CRC, New York, 2016, 740 pp. | MR

[25] Kardiometriya, 2017, no. 10, 17–33 (Russian) | MR

[26] Uspekhi Mat. Nauk, 73:4 (2018), 103–170 (Russian) | DOI | DOI | MR | Zbl

[27] Amel, B. and Imad, R., “Identification of the Source Term in Navier – Stokes System with Incomplete Data”, AIMS Math., 4:3 (2019), 516–526 | DOI | MR | Zbl

[28] Akysh, A. Sh., “The Cauchy Problem for the Navier – Stokes Equations”, Bull. Karaganda Univ. Math. Ser., 98:2 (2020), 15–23 | DOI

[29] Andrianov, I. V., Awrejcewicz, J., and Weichert, D., “Improved Continuous Models for Discrete Media”, Math. Probl. Eng., 2010 (2010), 986242, 35 pp. | DOI | Zbl

[30] Sritharan, S. S. and Kumarasamy, S., “Martingale Solutions for Stochastic Navier – Stokes Equations Driven by Lévy Noise”, Evol. Equ. Control Theory, 1:2 (2012), 355–362 | DOI | MR

[31] Grafke, T., Grauer, R., and Sideris, Th. C., “Turbulence Properties and Global Regularity of a Modified Navier – Stokes Equation”, Phys. D, 254 (2013), 18–23 | DOI | MR | Zbl

[32] Lasukov, V. V., “Cosmological and Quantum Solutions of the Navier – Stokes Equations”, Russ. Phys. J., 62:5 (2019), 778–793 | DOI | Zbl

[33] Gan, Z., Guo, Q., and Lu, Y., “Regularity and Stability of Finite Energy Weak Solutions for the Camassa – Holm Equations with Nonlocal Viscosity”, Calc. Var. Partial Differ. Equ., 60:1 (2021), 26, 26 \itemsep=3pt pp. | DOI | MR

[34] Chefranov, S. G. and Chefranov, A. S., “Exact Solution to the Main Turbulence Problem for a Compressible Medium and the Universal $-\frac83$ Law Turbulence Spectrum of Breaking Waves”, Phys. Fluids, 33:7 (2021), 076108 | DOI

[35] Chashechkin, Yu. D., “Foundations of Engineering Mathematics Applied for Fluid Flows”, Axioms, 10:4 (2021), 286–288 | DOI

[36] Goruleva, L. S. and Prosviryakov, E. Yu., “A New Class of Exact Solutions to the Navier – Stokes Equations with Allowance Made for Internal Heat Release”, Khimich. Fiz. Mezoskop., 24:1 (2022), 82–92 (Russian)

[37] Aristov, S. N. and Schwarz, K. G., Vortex Flows of Advective Nature in a Rotating Fluid Layer, Perm. Gos. Univ., Perm, 2006, 154 pp. (Russian)

[38] Aristov, S. N. and Schwarz, K. G., Vortex Currents in Thin Fluid Layers, Perm. Gos. Univ., Perm, 2011, 207 pp. (Russian)

[39] Teoret. Osnovy Khim. Tekhnolog., 43:5 (2009), 547–566 (Russian) | DOI | MR

[40] Prosviryakov, E. Yu., “Exact Solutions to Generalized Plane Beltrami – Trkal and Ballabh Flows”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 24:2 (2020), 319–330 | DOI | MR | Zbl

[41] Ostroumov, G. A., Free Convection Under the Conditions of the Internal Problem, GITTL, Moscow – Leningrad, 1952, 256 pp. (Russian) | MR

[42] Zh. Prikl. Mekh. Tekh. Fiz., 7:3 (1966), 69–72 (Russian) | DOI

[43] Ortiz-Pérez, A. S. and Dávalos-Orozco, L. A., “Convection in a Horizontal Fluid Layer under an Inclined Temperature Gradient”, Phys. Fluids, 23:8 (2011), 084107, 11 pp. | DOI

[44] Smith, M. K. and Davis, S. H., “Instabilities of Dynamic Thermocapillary Liquid Layers: Pt. 1. Convective Instabilities”, J. Fluid Mech., 132 (1983), 119–144 | DOI | MR | Zbl

[45] Zh. Prikl. Mekh. Tekh. Fiz., 2 (2013), 3–29 (Russian) | DOI | MR | Zbl

[46] Chikulaev, D. G. and Shvarts, K. G., “Effect of Rotation on the Stability of Advective Flow in a Horizontal Liquid Layer with Solid Boundaries at Small Prandtl Numbers”, Fluid Dyn., 50:2 (2015), 215–222 | DOI | MR | Zbl

[47] Knutova, N. S. and Shvarts, K. G., “A Study of Behavior and Stability of an Advective Thermocapillary Flow in a Weakly Rotating Liquid Layer under Microgravity”, Fluid Dyn., 50:3 (2015), 340–350 \itemsep=2pt | DOI | MR | Zbl

[48] Schwarz, K. G., “Plane-Parallel Advective Flow in a Horizontal Incompressible Fluid Layer with Rigid Boundaries”, Fluid Dyn., 49:4 (2014), 438–442 | DOI | MR | Zbl

[49] Napolitano, L. G., “Plane Marangoni – Poiseuille Flow of Two Immiscible Fluids”, Acta Astronaut., 7:4 (1980), 461–478 | DOI | MR | Zbl

[50] Goncharova, O. and Kabov, O., “Gas Flow and Thermocapillary Effects of Fluid Flow Dynamics in a Horizontal Layer”, Microgravity Sci. Technol., 21, Suppl. 1 (2009), 129–137 | DOI | MR

[51] Pukhnachev, V. V., “Non-Stationary Analogues of the Birikh Solution”, Izv. AltGU, 2011, no. 1–2, 69, 62–69 (Russian)

[52] Bratsun, D. A. and Mosheva, E. A., “Peculiar Properties of Density Wave Formation in a Two-Layer System of Reacting Miscible Liquids”, Vychisl. Mekh. Sploshn. Sred, 11:3 (2018), 302–322 (Russian)

[53] Aristov, S. N. and Prosviryakov, E. Yu., “On Laminar Flows of Planar Free Convection”, Nelin. Dinam., 9:4 (2013), 651–657 (Russian) | DOI

[54] Aristov, S. N. and Prosviryakov, E. Yu., “Inhomogeneous Couette Flow”, Nelin. Dinam., 10:2 (2014), 177–182 (Russian) | DOI | Zbl

[55] Teoret. Osnovy Khim. Tekhnolog., 52:5 (2018), 483–488 (Russian) | DOI

[56] Aristov, S. N. and Prosviryakov, E. Yu., “Stokes Waves in Vortical Fluid”, Russian J. Nonlinear Dyn., 10:3 (2014), 309–318 | Zbl

[57] Zh. Prikl. Mekh. Tekh. Fiz., 60:6 (2019), 65–71 (Russian) | DOI | MR | Zbl

[58] Prosviryakov, E. Yu., “Layered Gradient Stationary Flow Vertically Swirling Viscous Incompressible Fluid”, Proc. of the 3rd Russian Conf. “Mathematical Modeling and Information Technologies” (MMIT, Yekaterinburg, Nov 2016), 164–172

[59] Goruleva, L. S. and Prosviryakov, E. Yu., “The Couette – Poiseuille Inhomogeneous Shear Flow at the Motion of the Lower Boundary of the Horizontal Layer”, Khimich. Fiz. Mezoskop., 2021, no. 4, 403–411 (Russian)

[60] Privalova, V. V., Prosviryakov, E. Yu., and Simonov, M. A., “Nonlinear Gradient Flow of a Vertical Vortex Fluid in a Thin Layer”, Russian J. Nonlinear Dyn., 15:3 (2019), 271–283 | MR | Zbl

[61] Izv. Ross. Akad. Nauk. Mekh. Zidk. Gaza, 5 (2016), 3–9 (Russian) | DOI | MR | Zbl

[62] Teoret. Osnovy Khim. Tekhnolog., 54:1 (2020), 114–124 (Russian) | DOI

[63] Burmasheva, N. V. and Prosviryakov, E. Yu., “Convective Layered Flows of a Vertically Whirling Viscous Incompressible Fluid. Velocity Field Investigation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 23:2 (2019), 341–360 (Russian) | DOI | Zbl

[64] Burmasheva, N. V. and Prosviryakov, E. Yu., “Convective Layered Flows of a Vertically Whirling Viscous Incompressible Fluid. Temperature Field Investigation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 24:3 (2020), 528–541 (Russian) | DOI | Zbl