Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2023_19_1_a7, author = {Y. S. Popkov}, title = {Oscillations in {Dynamic} {Systems} with an {Entropy} {Operator}}, journal = {Russian journal of nonlinear dynamics}, pages = {125--135}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2023_19_1_a7/} }
Y. S. Popkov. Oscillations in Dynamic Systems with an Entropy Operator. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 1, pp. 125-135. http://geodesic.mathdoc.fr/item/ND_2023_19_1_a7/
[1] Popkov, Yu. S., “Theory of Dynamic Entropy-Operator Systems and Its Applications”, Autom. Remote Control, 67:6 (2006), 900–926 | DOI | MR | Zbl
[2] Popkov, Yu. S., Mathematical Demoeconomy. Integrating Demographic and Economic Approaches, De Gruyter, Berlin, 2014, 500 pp. | MR | Zbl
[3] Shvetsov, V. I. and Helbing, D., “Macroscopic Dynamics of Multilane Traffic”, Phys. Rev. E, 59:6 (1999), 6328–6339 | DOI | MR
[4] Gasnikov, A. V., Dorn, Yu. V., Nesterov, Yu. E., and Shpirko, S. V., “On the Three-Stage Version of Stable Dynamic Model of Traffic Flows”, Matem. Model., 26:6 (2014), 34–70 (Russian) | Zbl
[5] Popkov, A. Yu., Popkov, Yu. S., and van Wissen, L., “Positive Dynamic Systems with Entropy Operator: Application to Labour Market Modelling”, Eur. J. Oper. Res., 164:3 (2005), 811–828 | DOI | MR | Zbl
[6] Popkov, Yu., Shvetsov, V., and Weidlich, W., “Settlement Formation Models with Entropy Operator”, Ann. Reg. Sci., 32:2 (1998), 267–294 | DOI
[7] Leble, S. B., Vereshchagin, S. D., and Vereshchagina, I. S., “Algorithm for the Diagnostics of Waves and Entropy Mode in the Exponentially Stratified Atmosphere”, Russ. J. Phys. Chem. B, 14:2 (2020), 371–376 | DOI | MR
[8] Sibirsk. Mat. Zh., 41:2 (2000), 400–420 (Russian) | DOI | MR | Zbl
[9] Popkov, Yu. S. and Rublev, M. V., “Dynamic Procedures of Image Reconstruction from Projections (Computer Tomography)”, Autom. Remote Control, 67:2 (2006), 233–241 | DOI | MR | Zbl
[10] Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 11, 16–24 (Russian) | MR | Zbl
[11] Tikhonov, A. N., Vasilieyva, A. B., and Volosov, V. M., “Differential Equations with Small Parameters”, Proc. of the Internat. Symp. on Nonlinear Oscillations (Kiev, Sep 1961), v. 1, 456–473 (Russian) | MR | Zbl
[12] Kurina, G. A., Dmitriev, M. G., and Naidu, D. S., “Discrete Singularly Pertubed Control Problems (A Survey)”, Discrete Continuous Dyn. Syst. Ser. B, 24 (2017), 335–370 | MR | Zbl
[13] de Groot, S. E. and Masur, P., Non-Equilibrium Thermodynamics, North-Holland, Amsterdam, 1962, x, 510 pp. | MR | Zbl
[14] Popkov, Yu. S., “A New Class of Dynamic Macrosystem Models with Self-Reproduction”, Environ. Plan. A, 21:6 (1989), 739–751 | DOI | MR
[15] Wilson, A. G., Catastrophe Theory and Bifurcation: Applications to Urban and Regional Systems, Croom Helm, London, 1981, 354 pp. | MR | Zbl
[16] Bobylev, N. A. and Popkov, A. Yu., “Forced Oscillations in Systems with Argmin Type Operators”, Autom. Remote Control., 63:11 (2002), 1707–1716 | DOI | MR | Zbl
[17] Differ. Uravn., 34:8 (1998), 1018–1028, 1148 (Russian) | MR | Zbl
[18] Popkov, A. Yu., Macrosystems Theory and Its Applications. Equilibrium Models, Lecture Notes Control Inform. Sci., 203, Springer, London, 1995, xiv+323 pp. | MR | Zbl
[19] Popkov, Yu. S., “Qualitative Analysis of Dynamic Systems with the $B_q^{}$ Entropy Operator”, Autom. Remote Control, 68:1 (2007), 38–53 | DOI | MR | Zbl
[20] Popkov, Yu. S. and Rublev, M. V., “Estimation of a Local Lipschitz Constant of the $B_q^{}$-Entropy”, Autom. Remote Control, 66:7 (2005), 1069–1080 | DOI | MR | Zbl
[21] Krasnosel'skii, M. A., Vainikko, G. M., Zabreiko, P. P., Rutitski, Ya. B., and Stecenko, V. Ya., Approximated Solutions of Operator Equations, Springer, Dordrecht, 1972, 496 pp. | MR
[22] Krasnosel'skii, M. A., The Operator of Translation along the Trajectories of Differential Equations, Transl. Math. Monogr., 19, AMS, Providence, R.I., 1968, 294 pp. | MR | Zbl
[23] Bohr, H., “Zur Theorie der fastperiodischen Funktionen: 1. Eine Verallgemeinerung der Theorie der Fourierreihen”, Acta Math., 45 (1924), 29–127 ; Bohr, H., “Zur Theorie der fastperiodischen Funktionen: 2. Zusammenhang der fastperiodischen Funktionen mit Funktionen von unendlich vielen Variabeln; gleichmässige Approximation durch trigonometrische Summen”, Acta Math., 46 (1925), 102–214 ; Bohr, H., “Zur Theorie der fastperiodischen Funktionen: 3. Dirichletentwicklung analytischer Funktionen”, Acta Math., 47 (1926), 237–281 | DOI | MR | DOI | MR | DOI | MR
[24] Krasnosel'skii, M. A., Burd, V. S., and Kolesov, Yu. S., Nonlinear Almost Periodic Oscillations, Wiley, New York, 1973, 366 pp. | MR | Zbl
[25] Krasnosel'skii, M. A. and Zabreiko, P. P., Geometrical Methods of Nonlinear Analysis, Grundlehren Math. Wiss., 263, Springer, New York, 1984, XX, 412 pp. | DOI | MR | Zbl
[26] Popkov, Yu. S., “Upper Bound Design for the Lipschitz Constant of the $F_{G(\nu,\,q)}^{}$-Entropy Operator”, Mathematics, 6:5 (2018), 73, 9 pp. | DOI
[27] Davis, B., Integral Transforms and Their Applications, Springer, New York, 1978, xii, 411 pp. | MR
[28] Tikhonov, A. N., Vasil'eva, A. B., and Sveshnikov, A. G., Differential Equations, Springer, Berlin, 1985, VIII, 240 pp. | MR | Zbl
[29] Beckenbach, E. F. and Bellman, R., Inequalities, Ergeb. Math. Grenzgeb. (N. F.), 30, Springer, Berlin, 1961, xii+198 pp. | MR | Zbl
[30] Malkin, I. G., Some Problems in the Theory of Nonlinear Oscillations: In 2 Vols., United States Atomic Energy Commission, Technical Information Service, Germantown, Md., 1959, 589 pp.
[31] Volterra, V., Theory of Functionals and Integro- and Integro-Differential Equations, Blackie Son, London, 1930, iii, 226 pp. | MR
[32] Popkov, Yu. S., Kiselev, O. N., Petrov, N. P., and Shmul'yan, B. L., Identification and Optimization of Nonlinear Stochastic Systems, Energiya, Moscow, 1976, 440 pp. (Russian)
[33] Ogunfunmi, T., Adaptive Nonlinear System Identification: The Volterra and Winer Approaches, Springer, New York, 2007, XVI, 232 pp.
[34] Van Trees, H. L., Synthesis of Optimal Nonlinear Control Systems, Cambridge, Mass., MIT, 102 pp.
[35] Debnath, L. and Bhatta, D., Integral Transforms and Their Applications, 3rd ed., CRC, Boca Raton, Fla., 2015, xxvi+792 pp. | MR | Zbl
[36] Polyak, B. T., Introduction to Optimization, Optimization Software, New York, 1987 | MR
[37] Magnus, J. R. and Neudecker, H., Matrix Differential Calculus with Applications in Statistics and Econometrics, 3rd ed., Wiley, New York, 2007 | MR