Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2023_19_1_a6, author = {A. V. Golokolenov and D. V. Savin}, title = {Attractors of a {Weakly} {Dissipative} {System}}, journal = {Russian journal of nonlinear dynamics}, pages = {111--124}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2023_19_1_a6/} }
A. V. Golokolenov; D. V. Savin. Attractors of a Weakly Dissipative System. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 1, pp. 111-124. http://geodesic.mathdoc.fr/item/ND_2023_19_1_a6/
[1] Uspekhi Mat. Nauk, 18:5 (1963), 13–40 (Russian) | DOI | MR | Zbl
[2] Ascher, U. M., Numerical Methods for Evolutionary Differential Equations, Comput. Sci. Eng., 5, SIAM, Philadelphia, Penn., 2008, xiv+395 pp. | MR | Zbl
[3] Methods of the Qualitative Theory of Differential Equations, GGU, Gorki, 1987, 10–24 (Russian) | MR | MR | Zbl
[4] Błażejczyk-Okolewska, B. and Kapitaniak, T., “Coexisting Attractors of Impact Oscillator”, Chaos Solitons Fractals, 9:8 (1998), 1439–1443 | DOI
[5] de Freitas, M. S. T., Viana, R. L., and Grebogi, C., “Multistability, Basin Boundary Structure, and Chaotic Behavior in a Suspension Bridge Model”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14:3 (2004), 927–950 | DOI | MR | Zbl
[6] Feigenbaum, M. J., “Quantitative Universality for a Class of Nonlinear Transformations”, J. Stat. Phys., 19:1 (1978), 25–52 | DOI | MR | Zbl
[7] Feigenbaum, M. J., “The Universal Metric Properties of Nonlinear Transformations”, J. Statist. Phys., 21:6 (1979), 669–706 | DOI | MR | Zbl
[8] Felk, E. V., “The Effect of Weak Nonlinear Dissipation on the Stochastic Web”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 21:3 (2013), 72–79 (Russian) | Zbl
[9] Felk, E. V., Kuznetsov, A. P., and Savin, A. V., “Multistability and Transition to Chaos in the Degenerate Hamiltonian System with Weak Nonlinear Dissipative Perturbation”, Phys. A, 410 (2014), 561–572 | DOI | MR | Zbl
[10] Feudel, U., “Complex Dynamics in Multistable Systems”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18:6 (2008), 1607–1626 | DOI | MR
[11] Feudel, U. and Grebogi, C., “Why Are Chaotic Attractors Rare in Multistable Systems?”, Phys. Rev. Lett., 91:13 (2003), 134102, 4 pp. | DOI
[12] Feudel, U., Grebogi, C., Hunt, B. R., and Yorke, J. A., “Map with More Than $100$ Coexisting Low-Period Periodic Attractors”, Phys. Rev. E, 54:1 (1996), 71–81 | DOI | MR
[13] Feudel, U., Grebogi, C., Poon, L., and Yorke, J. A., “Dynamical Properties of a Simple Mechanical System with a Large Number of Coexisting Periodic Attractors”, Chaos Solitons Fractals, 9:1–2 (1998), 171–180 | DOI | MR | Zbl
[14] Forest, E. and Ruth, R. D., “Fourth-Order Symplectic Integration”, Phys. D, 43:1 (1990), 105–117 | DOI | MR | Zbl
[15] Teoret. Mat. Fiz., 146:3 (2006), 447–466 (Russian) | DOI | DOI | MR | Zbl
[16] Dokl. Akad. Nauk SSSR (N. S.), 98 (1954), 527–530 (Russian) | DOI | MR | MR | Zbl
[17] Kuznetsov, A. P., Kuznetsov, S. P., Savin, A. V., and Savin, D. V., “Autooscillating System with Compensated Dissipation: Dynamics of Approximated Discrete Map”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 16:5 (2008), 127–138 (Russian)
[18] Pis'ma Zh. Tekh. Fiz., 34:22 (2008), 72–80 (Russian) | DOI
[19] Kuznetsov, A. P., Savin, A. V., and Savin, D. V., “Conservative and Dissipative Dynamics of Ikeda Map”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 14:2 (2006), 94–106 (Russian) | Zbl
[20] Pis'ma Zh. Tekh. Fiz., 33:3 (2007), 57–63 (Russian) | DOI
[21] Kuznetsov, A. P., Savin, A. V., and Savin, D. V., “On Some Properties of Nearly Conservative Dynamics of Ikeda Map”, Nonlinear Phenom. Complex Syst., 10:4 (2007), 393–400 | MR
[22] Kuznetsov, A. P., Savin, A. V., and Savin, D. V., “On Some Properties of Nearly Conservative Dynamics of Ikeda Map and Its Relation with the Conservative Case”, Phys. A, 387:7 (2008), 1464–1474 | DOI | MR
[23] Kuznetsov, S. P., Kuznetsov, A. P., and Sataev, I. R., “Multiparameter Critical Situations, Universality and Scaling in Two-Dimensional Period-Doubling Maps”, J. Stat. Phys., 121:5–6 (2005), 697–748 | DOI | MR | Zbl
[24] Kuznetsov, S. P. and Sataev, I. R., “New Types of Critical Dynamics for Two-Dimensional Maps”, Phys. Lett. A, 162:3 (1992), 236–242 | DOI | MR
[25] Kuznetsov, Yu. A., Elements of Applied Bifurcation Theory, Appl. Math. Sci., 112, 3rd ed., Springer, New York, 2004, 631 pp. | DOI | MR | Zbl
[26] Kuznetsov, Yu. A. and Levitin, V. V., CONTENT: A Multiplatform Environment for Analyzing Dynamical Systems, Amsterdam: Dynamical Systems Laboratory, Centrum voor Wiskunde en Informatica }, 1997 {\tt http://www.math.uu.nl/people/kuznet/CONTENT
[27] Moser, J., “On Invariant Curves of Area-Preserving Mappings of an Annulus”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1962 (1962), 1–20 | MR | Zbl
[28] Rech, P. C., Beims, M. W., and Gallas, J. A. C., “Basin Size Evolution between Dissipative and Conservative Limits”, Phys. Rev. E, 71:1 (2005), 017202, 4 pp. | DOI
[29] Reichl, L. E., The Transition to Chaos in Conservative Classical Systems: Quantum Manifestations, 2nd ed., Springer, New York, 2004, xvi+551 pp. | MR
[30] Savin, A. V. and Savin, D. V., “The Basins of Attractors in the Web Map with Weak Dissipation”, Nelin. Mir, 8:2 (2010), 70–71 (Russian)
[31] Savin, D. V., Kuznetsov, A. P., Savin, A. V., and Feudel, U., “Different Types of Critical Behavior in Conservatively Coupled Hénon Maps”, Phys. Rev. E, 91:6 (2015), 062905, 9 pp. | DOI | MR
[32] Savin, D. V., Savin, A. V., Kuznetsov, A. P., Kuznetsov, S. P., and Feudel, U., “The Self-Oscillating System with Compensated Dissipation: The Dynamics of the Approximate Discrete Map”, Dynam. Syst., 27:1 (2012), 117–129 | DOI | MR | Zbl
[33] Simó, C. and Vieiro, A., “Resonant Zones, Inner and Outer Splittings in Generic and Low Order Resonances of Area Preserving Maps”, Nonlinearity, 22:5 (2009), 1191–1245 | DOI | MR | Zbl
[34] Zaslavsky, G. M., The Physics of Chaos in Hamiltonian Systems, 2nd ed., Imperial College Press, London, 2007, 328 pp. | MR | Zbl