Attractors of a Weakly Dissipative System
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 1, pp. 111-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article deals with the dynamics of a pulse-driven self-oscillating system — the Van der Pol oscillator — with the pulse amplitude depending on the oscillator coordinate. In the conservative limit the “stochastic web” can be obtained in the phase space when the function defining this dependence is a harmonic one. The paper focuses on the case where the frequency of external pulses is four times greater than the frequency of the autonomous system. The results of a numerical study of the structure of both parameter and phase planes are presented for systems with different forms of external pulses: the harmonic amplitude function and its power series expansions. Complication of the pulse amplitude function results in the complication of the parameter plane structure, while typical scenarios of transition to chaos visible in the parameter plane remain the same in different cases. In all cases the structure of bifurcation lines near the border of chaos is typical of the existence of the Hamiltonian type critical point. Changes in the number and the relative position of coexisting attractors are investigated while the system approaches the conservative limit. A typical scenario of destruction of attractors with a decrease in nonlinear dissipation is revealed, and it is shown to be in good agreement with the theory of 1:4 resonance. The number of attractors of period 4 seems to grow infinitely with the decrease of dissipation when the pulse amplitude function is harmonic, while in other cases all attractors undergo destruction at certain values of dissipation parameters after the birth of high-period periodic attractors.
Keywords: nonlinear dynamics, saddle-node bifurcation, stochastic web, Lyapunov exponent, multistability.
@article{ND_2023_19_1_a6,
     author = {A. V. Golokolenov and D. V. Savin},
     title = {Attractors of a {Weakly} {Dissipative} {System}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {111--124},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_1_a6/}
}
TY  - JOUR
AU  - A. V. Golokolenov
AU  - D. V. Savin
TI  - Attractors of a Weakly Dissipative System
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 111
EP  - 124
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_1_a6/
LA  - en
ID  - ND_2023_19_1_a6
ER  - 
%0 Journal Article
%A A. V. Golokolenov
%A D. V. Savin
%T Attractors of a Weakly Dissipative System
%J Russian journal of nonlinear dynamics
%D 2023
%P 111-124
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_1_a6/
%G en
%F ND_2023_19_1_a6
A. V. Golokolenov; D. V. Savin. Attractors of a Weakly Dissipative System. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 1, pp. 111-124. http://geodesic.mathdoc.fr/item/ND_2023_19_1_a6/

[1] Uspekhi Mat. Nauk, 18:5 (1963), 13–40 (Russian) | DOI | MR | Zbl

[2] Ascher, U. M., Numerical Methods for Evolutionary Differential Equations, Comput. Sci. Eng., 5, SIAM, Philadelphia, Penn., 2008, xiv+395 pp. | MR | Zbl

[3] Methods of the Qualitative Theory of Differential Equations, GGU, Gorki, 1987, 10–24 (Russian) | MR | MR | Zbl

[4] Błażejczyk-Okolewska, B. and Kapitaniak, T., “Coexisting Attractors of Impact Oscillator”, Chaos Solitons Fractals, 9:8 (1998), 1439–1443 | DOI

[5] de Freitas, M. S. T., Viana, R. L., and Grebogi, C., “Multistability, Basin Boundary Structure, and Chaotic Behavior in a Suspension Bridge Model”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14:3 (2004), 927–950 | DOI | MR | Zbl

[6] Feigenbaum, M. J., “Quantitative Universality for a Class of Nonlinear Transformations”, J. Stat. Phys., 19:1 (1978), 25–52 | DOI | MR | Zbl

[7] Feigenbaum, M. J., “The Universal Metric Properties of Nonlinear Transformations”, J. Statist. Phys., 21:6 (1979), 669–706 | DOI | MR | Zbl

[8] Felk, E. V., “The Effect of Weak Nonlinear Dissipation on the Stochastic Web”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 21:3 (2013), 72–79 (Russian) | Zbl

[9] Felk, E. V., Kuznetsov, A. P., and Savin, A. V., “Multistability and Transition to Chaos in the Degenerate Hamiltonian System with Weak Nonlinear Dissipative Perturbation”, Phys. A, 410 (2014), 561–572 | DOI | MR | Zbl

[10] Feudel, U., “Complex Dynamics in Multistable Systems”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18:6 (2008), 1607–1626 | DOI | MR

[11] Feudel, U. and Grebogi, C., “Why Are Chaotic Attractors Rare in Multistable Systems?”, Phys. Rev. Lett., 91:13 (2003), 134102, 4 pp. | DOI

[12] Feudel, U., Grebogi, C., Hunt, B. R., and Yorke, J. A., “Map with More Than $100$ Coexisting Low-Period Periodic Attractors”, Phys. Rev. E, 54:1 (1996), 71–81 | DOI | MR

[13] Feudel, U., Grebogi, C., Poon, L., and Yorke, J. A., “Dynamical Properties of a Simple Mechanical System with a Large Number of Coexisting Periodic Attractors”, Chaos Solitons Fractals, 9:1–2 (1998), 171–180 | DOI | MR | Zbl

[14] Forest, E. and Ruth, R. D., “Fourth-Order Symplectic Integration”, Phys. D, 43:1 (1990), 105–117 | DOI | MR | Zbl

[15] Teoret. Mat. Fiz., 146:3 (2006), 447–466 (Russian) | DOI | DOI | MR | Zbl

[16] Dokl. Akad. Nauk SSSR (N. S.), 98 (1954), 527–530 (Russian) | DOI | MR | MR | Zbl

[17] Kuznetsov, A. P., Kuznetsov, S. P., Savin, A. V., and Savin, D. V., “Autooscillating System with Compensated Dissipation: Dynamics of Approximated Discrete Map”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 16:5 (2008), 127–138 (Russian)

[18] Pis'ma Zh. Tekh. Fiz., 34:22 (2008), 72–80 (Russian) | DOI

[19] Kuznetsov, A. P., Savin, A. V., and Savin, D. V., “Conservative and Dissipative Dynamics of Ikeda Map”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 14:2 (2006), 94–106 (Russian) | Zbl

[20] Pis'ma Zh. Tekh. Fiz., 33:3 (2007), 57–63 (Russian) | DOI

[21] Kuznetsov, A. P., Savin, A. V., and Savin, D. V., “On Some Properties of Nearly Conservative Dynamics of Ikeda Map”, Nonlinear Phenom. Complex Syst., 10:4 (2007), 393–400 | MR

[22] Kuznetsov, A. P., Savin, A. V., and Savin, D. V., “On Some Properties of Nearly Conservative Dynamics of Ikeda Map and Its Relation with the Conservative Case”, Phys. A, 387:7 (2008), 1464–1474 | DOI | MR

[23] Kuznetsov, S. P., Kuznetsov, A. P., and Sataev, I. R., “Multiparameter Critical Situations, Universality and Scaling in Two-Dimensional Period-Doubling Maps”, J. Stat. Phys., 121:5–6 (2005), 697–748 | DOI | MR | Zbl

[24] Kuznetsov, S. P. and Sataev, I. R., “New Types of Critical Dynamics for Two-Dimensional Maps”, Phys. Lett. A, 162:3 (1992), 236–242 | DOI | MR

[25] Kuznetsov, Yu. A., Elements of Applied Bifurcation Theory, Appl. Math. Sci., 112, 3rd ed., Springer, New York, 2004, 631 pp. | DOI | MR | Zbl

[26] Kuznetsov, Yu. A. and Levitin, V. V., CONTENT: A Multiplatform Environment for Analyzing Dynamical Systems, Amsterdam: Dynamical Systems Laboratory, Centrum voor Wiskunde en Informatica }, 1997 {\tt http://www.math.uu.nl/people/kuznet/CONTENT

[27] Moser, J., “On Invariant Curves of Area-Preserving Mappings of an Annulus”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1962 (1962), 1–20 | MR | Zbl

[28] Rech, P. C., Beims, M. W., and Gallas, J. A. C., “Basin Size Evolution between Dissipative and Conservative Limits”, Phys. Rev. E, 71:1 (2005), 017202, 4 pp. | DOI

[29] Reichl, L. E., The Transition to Chaos in Conservative Classical Systems: Quantum Manifestations, 2nd ed., Springer, New York, 2004, xvi+551 pp. | MR

[30] Savin, A. V. and Savin, D. V., “The Basins of Attractors in the Web Map with Weak Dissipation”, Nelin. Mir, 8:2 (2010), 70–71 (Russian)

[31] Savin, D. V., Kuznetsov, A. P., Savin, A. V., and Feudel, U., “Different Types of Critical Behavior in Conservatively Coupled Hénon Maps”, Phys. Rev. E, 91:6 (2015), 062905, 9 pp. | DOI | MR

[32] Savin, D. V., Savin, A. V., Kuznetsov, A. P., Kuznetsov, S. P., and Feudel, U., “The Self-Oscillating System with Compensated Dissipation: The Dynamics of the Approximate Discrete Map”, Dynam. Syst., 27:1 (2012), 117–129 | DOI | MR | Zbl

[33] Simó, C. and Vieiro, A., “Resonant Zones, Inner and Outer Splittings in Generic and Low Order Resonances of Area Preserving Maps”, Nonlinearity, 22:5 (2009), 1191–1245 | DOI | MR | Zbl

[34] Zaslavsky, G. M., The Physics of Chaos in Hamiltonian Systems, 2nd ed., Imperial College Press, London, 2007, 328 pp. | MR | Zbl