On a Classification of Periodic Maps on the 2-Torus
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 1, pp. 91-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, following J. Nielsen, we introduce a complete characteristic of orientation- preserving periodic maps on the two-dimensional torus. All admissible complete characteristics were found and realized. In particular, each of the classes of orientation-preserving periodic homeomorphisms on the 2-torus that are nonhomotopic to the identity is realized by an algebraic automorphism. Moreover, it is shown that the number of such classes is finite. According to V. Z. Grines and A. Bezdenezhnykh, any gradient-like orientation-preserving diffeomorphism of an orientable surface is represented as a superposition of the time-1 map of a gradient-like flow and some periodic homeomorphism. Thus, the results of this work are directly related to the complete topological classification of gradient-like diffeomorphisms on surfaces.
Keywords: gradient-like flows and diffeomorphisms on surfaces, periodic homeomorphisms, torus.
@article{ND_2023_19_1_a5,
     author = {D. A. Baranov and V. Z. Grines and O. V. Pochinka and E. E. Chilina},
     title = {On a {Classification} of {Periodic} {Maps} on the {2-Torus}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {91--110},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_1_a5/}
}
TY  - JOUR
AU  - D. A. Baranov
AU  - V. Z. Grines
AU  - O. V. Pochinka
AU  - E. E. Chilina
TI  - On a Classification of Periodic Maps on the 2-Torus
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 91
EP  - 110
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_1_a5/
LA  - en
ID  - ND_2023_19_1_a5
ER  - 
%0 Journal Article
%A D. A. Baranov
%A V. Z. Grines
%A O. V. Pochinka
%A E. E. Chilina
%T On a Classification of Periodic Maps on the 2-Torus
%J Russian journal of nonlinear dynamics
%D 2023
%P 91-110
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_1_a5/
%G en
%F ND_2023_19_1_a5
D. A. Baranov; V. Z. Grines; O. V. Pochinka; E. E. Chilina. On a Classification of Periodic Maps on the 2-Torus. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 1, pp. 91-110. http://geodesic.mathdoc.fr/item/ND_2023_19_1_a5/

[1] Casson, A. J. and Bleiler, S. A., Automorphisms of Surfaces after Nielsen and Thurston, London Math. Soc. Stud. Texts, 9, Cambridge Univ. Press, Cambridge, 1988, iv+105 pp. | MR | Zbl

[2] Farb, B. and Margalit, D., A Primer on Mapping Class Groups, Princeton Math. Ser., 49, Princeton Univ. Press, Princeton, N.J., 2012, xiv+472 pp. | MR

[3] Differential and Integral Equations, ed. N. F. Otrokov, GGU, Gorki, 1985, 33–37 (Russian) | MR | MR

[4] Methods of the Qualitative Theory of Differential Equations, ed. E. A. Leontovich-Andronova, GGU, Gorki, 1987, 24–31 (Russian) | MR | MR

[5] Bezdenezhnykh, A. N. and Grines, V. Z., “Diffeomorphisms with Orientable Heteroclinic Sets on Two-Dimensional Manifolds”, Methods of the Qualitative Theory of Differential Equations, ed. E. A. Leontovich-Andronova, GGU, Gorki, 1985, 139–152 (Russian) | MR

[6] Tr. Mat. Inst. Steklova, 315 (2021), 95–107 (Russian) | DOI | DOI | MR | Zbl

[7] Morozov, A. I., “Determination of the Homotopy Type of a Morse – Smale Diffeomorphism on a $2$-Torus by Heteroclinic Intersection”, Russian J. Nonlinear Dyn., 17:4 (2021), 465–473 | MR | Zbl

[8] Morozov, A. and Pochinka, O., “Morse – Smale Surfaced Diffeomorphisms with Orientable Heteroclinic”, J. Dyn. Control Syst., 26:4 (2020), 629–639 | DOI | MR | Zbl

[9] Uspekhi Mat. Nauk, 74:1 (445) (2019), 41–116 (Russian) | DOI | DOI | MR | Zbl

[10] Funktsional. Anal. i Prilozhen., 2:1 (1968), 64–89 (Russian) | DOI | MR | Zbl

[11] Izv. Ross. Akad. Nauk Ser. Mat., 84:5 (2020), 40–97 (Russian) | DOI | MR | Zbl

[12] Nielsen, J., “Die Struktur periodischer Transformationen von Flächen”, Math.-fys. Medd. Danske Vid. Selsk., 15 (1937), 1–77 | Zbl

[13] Katok, S., Fuchsian Groups, Univ. of Chicago Press, Chicago, 1992, x+175 pp. | MR | Zbl

[14] von Kerekjarto, B., “Topologische Charakterisierung der linearen Abbildungen”, Acta Sci. Math. (Szeged), 6 (1934), 235–262 | Zbl

[15] Brouwer, L. E. J., “Aufzahlung der periodisken transformationen”, KNAW, Proc., 21:2 (1919), 1352–1356

[16] Yokoyama, K., “Classification of Periodic Maps on Compact Surfaces: 1”, Tokyo J. Math., 6:1 (1983), 75–94 | DOI | MR | Zbl

[17] Kurenkov, E. D. and Ryazanova, K. A., “On Periodic Translations on $n$-Torus”, Dinam. Sistemy, 7 (35):2 (2017), 113–118 | Zbl

[18] Grines, V., Medvedev, T., and Pochinka, O., Dynamical Systems on $2$- and $3$-Manifolds, Dev. Math., 46, Springer, New York, 2016, xxvi, 295 pp. | MR | Zbl

[19] Andronov, A. A., Leontovich, E. A., Gordon, I. I., and Maier, A. G., Qualitative Theory of Second-Order Dynamic Systems, Wiley, New York, 1973, xxiii+524 pp. | MR | Zbl

[20] Hirsch, M. W., “Degrees, Intersection Numbers, and the Euler Characteristic”, Differential Topology, Grad. Texts in Math., 33, Springer, New York, 1976, 120–141 | DOI | MR

[21] Lefschetz, S., “On the Fixed Point Formula”, Ann. of Math. (2), 38:4 (1937), 819–822 | DOI | MR | Zbl

[22] Rolfsen, D., Knots and Links, Math. Lecture Ser., 7, Publish or Perish, Inc., Houston, 1990, xiv+439 pp. | MR | Zbl

[23] Batterson, S., “The Dynamics of Morse – Smale Diffeomorphisms on the Torus”, Trans. Amer. Math. Soc., 256 (1979), 395–403 | DOI | MR | Zbl

[24] Kronecker, L., “Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten”, J. Reine Angew. Math., 53 (1857), 173–175 | MR

[25] Zieschang, H., Vogt, E., and Coldewey, H.-D., “On the Complex Analytic Theory of Riemann Surfaces and Planar Discontinuous Groups”, Surfaces and Planar Discontinuous Groups, Lecture Notes in Math., 835, Springer, Berlin, 1980, 242–286, x+334 pp. | DOI | MR