Analysis of Stationary Points and Bifurcations
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 1, pp. 49-58
Voir la notice de l'article provenant de la source Math-Net.Ru
A dynamically consistent model of a meandering jet stream with two Rossby waves obtained
using the law of conservation of potential vorticity is investigated. Stationary points are found
in the phase space of advection equations and the type of their stability is determined analyti-
cally. All topologically different flow regimes and their bifurcations are found for the stationary
model (taking into account only the first Rossby wave). The results can be used in the study
of Lagrangian transport, mixing, and chaotic advection in problems of cross-frontal transport in
geophysical flows with meandering jets.
Keywords:
stationary points, jet flow.
Mots-clés : separatrices reconnection
Mots-clés : separatrices reconnection
@article{ND_2023_19_1_a3,
author = {A. A. Udalov and M. Yu. Uleysky and M. V. Budyansky},
title = {Analysis of {Stationary} {Points} and {Bifurcations}},
journal = {Russian journal of nonlinear dynamics},
pages = {49--58},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ND_2023_19_1_a3/}
}
TY - JOUR AU - A. A. Udalov AU - M. Yu. Uleysky AU - M. V. Budyansky TI - Analysis of Stationary Points and Bifurcations JO - Russian journal of nonlinear dynamics PY - 2023 SP - 49 EP - 58 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2023_19_1_a3/ LA - en ID - ND_2023_19_1_a3 ER -
A. A. Udalov; M. Yu. Uleysky; M. V. Budyansky. Analysis of Stationary Points and Bifurcations. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 1, pp. 49-58. http://geodesic.mathdoc.fr/item/ND_2023_19_1_a3/