Methods of Simplifying Optimal Control Problems,
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 1, pp. 35-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

Methods of simplifying optimal control problems by decreasing the dimension of the space of states are considered. For this purpose, transition to new phase coordinates or conversion of the phase coordinates to the class of controls is used. The problems of heat exchange and parametric control of oscillators are given as examples: braking/swinging of a pendulum by changing the length of suspension and variation of the energy of molecules’ oscillations in the crystal lattice by changing the state of the medium (exposure to laser radiation). The last problem corresponds to changes in the temperature of the crystal.
Keywords: change of state variables, problems linear in control, heat exchange with minimal dissipation, parametric control, oscillation of a pendulum
Mots-clés : ensemble of oscillators.
@article{ND_2023_19_1_a2,
     author = {A. M. Tsirlin},
     title = {Methods of {Simplifying} {Optimal} {Control} {Problems,}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {35--48},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_1_a2/}
}
TY  - JOUR
AU  - A. M. Tsirlin
TI  - Methods of Simplifying Optimal Control Problems,
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 35
EP  - 48
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_1_a2/
LA  - en
ID  - ND_2023_19_1_a2
ER  - 
%0 Journal Article
%A A. M. Tsirlin
%T Methods of Simplifying Optimal Control Problems,
%J Russian journal of nonlinear dynamics
%D 2023
%P 35-48
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_1_a2/
%G en
%F ND_2023_19_1_a2
A. M. Tsirlin. Methods of Simplifying Optimal Control Problems,. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 1, pp. 35-48. http://geodesic.mathdoc.fr/item/ND_2023_19_1_a2/

[1] Gurman, V. I., The Expansion Principle in Control Tasks, 2nd ed., Fizmatlit, Moskow, 1997, 287 pp. (Russian) | MR

[2] Tsirlin, A. M., Mathematical Models and Optimal Processes in Macrosystems, Nauka, Moscow, 2003, 504 pp. (Russian) | MR

[3] Piccoli, B. and Kulkarni, J., “Pumping a Swing by Standing and Squatting: Do Children Pump Time Optimally?”, IEEE Contr. Syst. Mag., 25:4 (2005), 48–56 | DOI

[4] Andresen, B., Salamon, P., Hoffmann, K. H., and Tsirlin, A. M., “Optimal Processes for Controllable Oscillators”, Autom. Remote Control, 79:12 (2018), 2103–2113 | DOI | MR | Zbl

[5] Salamon, P., Hoffman, K. H., Rezek, Y., and Kosloff, R., “Maximum Work in Minimum Time from a Conservative Quantum System”, Phys. Chem. Chem. Phys., 11:7 (2009), 1027–1032 | DOI

[6] Tsirlin, A. M., Optimization Methods in Irreversible Thermodynamics, Urait, Moscow, 2019, 320 pp. (Russian)

[7] Krotov, V. F., “Discontinuous Solutions of Variational Problems: 1”, Izv. Vyssh. Uchebn. Zaved. Matem., 1960, no. 5, 86–98 (Russian) | MR | Zbl

[8] Krotov, V. F., Bukreev, V. Z., and Gurman, V. I., New Variational Methods in Flight Dynamics, Mashinostroenie, Moscow, 1969, 286 pp. (Russian)

[9] Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., and Mishchenko, E. F., The Mathematical Theory of Optimal Processes, ed. L. W. Neustadt, Wiley, New York, 1962, viii+360 pp. | MR | Zbl

[10] Alekseev, V. M., Tikhomirov, V. M., and Fomin, S. V., Optimal Control, Nauka, Moscow, 1979, 432 pp. (Russian) | MR | Zbl

[11] Kondepudi, D. and Prigogine, I., Modern Thermodynamics: From Heat Engines to Dissipative Structures, 2nd ed., Wiley, New York, 2014, 560 pp.