Excitation of a Group of Two Hindmarsh – Rose
Russian journal of nonlinear dynamics, Tome 19 (2023) no. 1, pp. 19-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a model of three Hindmarsh – Rose neurons with directional electrical connections. We consider two fully-connected neurons that form a slave group which receives the signal from the master neuron via a directional coupling. We control the excitability of the neurons by setting the constant external currents. We study the possibility of excitation of the slave system in the stable resting state by the signal coming from the master neuron, to make it fire spikes/bursts tonically. We vary the coupling strength between the master and the slave systems as another control parameter. We calculate the borderlines of excitation by different types of signal in the control parameter space. We establish which of the resulting dynamical regimes are chaotic. We also demonstrate the possibility of excitation by a single burst or a spike in areas of control parameters, where the slave system is bistable. We calculate the borderlines of excitation by a single period of the excitatory signal.
Keywords: neuronal excitability, Hindmarsh – Rose model.
Mots-clés : chaos
@article{ND_2023_19_1_a1,
     author = {I. R. Garashchuk and D. I. Sinelshchikov},
     title = {Excitation of a {Group} of {Two} {Hindmarsh} {\textendash} {Rose}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {19--34},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2023_19_1_a1/}
}
TY  - JOUR
AU  - I. R. Garashchuk
AU  - D. I. Sinelshchikov
TI  - Excitation of a Group of Two Hindmarsh – Rose
JO  - Russian journal of nonlinear dynamics
PY  - 2023
SP  - 19
EP  - 34
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2023_19_1_a1/
LA  - en
ID  - ND_2023_19_1_a1
ER  - 
%0 Journal Article
%A I. R. Garashchuk
%A D. I. Sinelshchikov
%T Excitation of a Group of Two Hindmarsh – Rose
%J Russian journal of nonlinear dynamics
%D 2023
%P 19-34
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2023_19_1_a1/
%G en
%F ND_2023_19_1_a1
I. R. Garashchuk; D. I. Sinelshchikov. Excitation of a Group of Two Hindmarsh – Rose. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 1, pp. 19-34. http://geodesic.mathdoc.fr/item/ND_2023_19_1_a1/

[1] Izhikevich, E. M., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, MIT Press, Cambridge, Mass., 2007, xvi+441 pp. | MR

[2] Hodgkin, A. L., “The Local Electric Changes Associated with Repetitive Action in a Non-Medullated Axon”, J. Physiol., 107:2 (1948), 165–181 | DOI

[3] Baer, S. M., Erneux, T., and. Rinzel, J., “The Slow Passage through a Hopf Bifurcation: Delay, Memory Effects, and Resonance”, SIAM J. Appl. Math., 49:1 (1989), 55–71 | DOI | MR

[4] Izhikevich, E. M., “Which Model to Use for Cortical Spiking Neurons?”, IEEE Trans. Neural Netw., 15:5 (2004), 1063–1070 | DOI

[5] Bursting: The Genesis of Rhythm in the Nervous System, eds. S. Coombes, P. C. Bressloff, World Sci., Singapore, 2005, 420 pp. | MR | Zbl

[6] Izhikevich, E. M., Desai, N. S., Walcott, E. C., and Hoppensteadt, F. C., “Bursts As a Unit of Neural Information: Selective Communication via Resonance”, Trends Neurosci., 26:3 (2003), 161–167 | DOI

[7] Hodgkin, A. L. and Huxley, A. F., “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve”, J. Physiol., 114:4 (1952), 500–544 | DOI

[8] Stankevich, N. and Mosekilde, E., “Coexistence between Silent and Bursting States in a Biophysical Hodgkin – Huxley-Type of Model”, Chaos, 27:12 (2017), 123101, 8 pp. | DOI | MR

[9] Stankevich, N. V., Mosekilde, E., and Koseska, A., “Stochastic Switching in Systems with Rare and Hidden Attractors”, Eur. Phys. J. Spec. Top., 227 (2018), 747–756 | DOI

[10] Stankevich, N. V. and Koseska, A., “Cooperative Maintainance of Cellular Identity in Systems with Intercellular Communication Defects”, Chaos, 30:1 (2020), 013144, 9 pp. | DOI | MR | Zbl

[11] Hindmarsh, J. L. and Rose, R. M., “A Model of Neuronal Bursting Using Three Coupled First Order Differential Equations”, Proc. R. Soc. Lond. Ser. B Biol. Sci., 221:1222 (1984), 87–102

[12] Shilnikov, A. and Kolomiets, M., “Methods of the Qualitative Theory for the Hindmarsh – Rose Model: A Case Study. A Tutorial”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18:8 (2008), 2141–2168 | DOI | MR | Zbl

[13] Barrio, R., Angeles Martínez, M., Serrano, S., and Shilnikov, A., “Macro- and Micro-Chaotic Structures in the Hindmarsh – Rose Model of Bursting Neurons”, Chaos, 24:2 (2014), 023128, 11 pp. | DOI | MR | Zbl

[14] Innocenti, G., Morelli, A., Genesio, R., and Torcini, A., “Dynamical Phases of the Hindmarsh – Rose Neuronal Model: Studies of the Transition from Bursting to Spiking Chaos”, Chaos, 17:4 (2007), 043128, 11 pp. | DOI | MR | Zbl

[15] Huerta, R., Rabinovich, M. I., Abarbanel, H. D. I., and Bazhenov, M., “Spike-Train Bifurcation Scaling in Two Coupled Chaotic Neurons”, Phys. Rev. E., 55:5 (1997), R2108–R2110 | DOI

[16] Holden, A. V. and Fan, Y.-Sh., “From Simple to Simple Bursting Oscillatory Behaviour via Chaos in the Rose – Hindmarsh Model for Neuronal Activity”, Chaos Solitons Fractals, 2:3 (1992), 221–236 | DOI | MR | Zbl

[17] Erichsen, R. and Brunnet, L. G., “Multistability in Networks of Hindmarsh – Rose Neurons”, Phys. Rev. E, 78:6 (2008), 061917, 6 pp. | DOI | MR

[18] Malashchenko, T., Shilnikov, A., and Cymbalyuk, G., “Six Types of Multistability in a Neuronal Model Based on Slow Calcium Current”, PLoS One, 6:7 (2011), e21782, 10 pp. | DOI

[19] Yu, H. and Peng, J., “Chaotic Synchronization and Control in Nonlinear-Coupled Hindmarsh – Rose Neural Systems”, Chaos Solitons Fractals, 29:2 (2006), 342–348 | DOI | MR | Zbl

[20] Etémé, A. S., Tabi, C. B., and Mohamadou, A., “Synchronized Nonlinear Patterns in Electrically Coupled Hindmarsh – Rose Neural Networks with Long-Range Diffusive Interactions”, Chaos Solitons Fractals, 104 (2017), 813–826 | DOI | MR | Zbl

[21] Castanedo-Guerra, I. T., Steur, E., and Nijmeijer, H., “Synchronization of Coupled Hindmarsh – Rose Neurons: Effects of an Exogenous Parameter”, IFAC-PapersOnLine, 49:14 (2016), 84–89 | DOI

[22] Garashchuk, I. R., “Asynchronous Chaos and Bifurcations in a Model of Two Coupled Identical Hindmarsh – Rose Neurons”, Russian J. Nonlinear Dyn., 17:3 (2021), 307–320 | MR | Zbl

[23] Connors, B. W. and Long, M. A., “Electrical Synapses in the Mammalian Brain”, Annu. Rev. Neurosci., 27 (2004), 393–418 | DOI

[24] Klopfenstein, R. W., “Numerical Differentiation Formulas for Stiff Systems of Ordinary Differential Equations”, RCA Rev., 32:3 (1971), 447–462 | MR

[25] Shampine, L. F. and Reichelt, M. W., “The MATLAB ODE Suite: Dedicated to C. William Gear on the Occasion of His 60th Birthday”, SIAM J. Sci. Comput., 18:1 (1997), 1–22 | DOI | MR | Zbl

[26] Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., “Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1: Theory”, Meccanica, 15:1 (1980), 9–20 | DOI | Zbl