Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2023_19_1_a1, author = {I. R. Garashchuk and D. I. Sinelshchikov}, title = {Excitation of a {Group} of {Two} {Hindmarsh} {\textendash} {Rose}}, journal = {Russian journal of nonlinear dynamics}, pages = {19--34}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2023_19_1_a1/} }
I. R. Garashchuk; D. I. Sinelshchikov. Excitation of a Group of Two Hindmarsh – Rose. Russian journal of nonlinear dynamics, Tome 19 (2023) no. 1, pp. 19-34. http://geodesic.mathdoc.fr/item/ND_2023_19_1_a1/
[1] Izhikevich, E. M., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, MIT Press, Cambridge, Mass., 2007, xvi+441 pp. | MR
[2] Hodgkin, A. L., “The Local Electric Changes Associated with Repetitive Action in a Non-Medullated Axon”, J. Physiol., 107:2 (1948), 165–181 | DOI
[3] Baer, S. M., Erneux, T., and. Rinzel, J., “The Slow Passage through a Hopf Bifurcation: Delay, Memory Effects, and Resonance”, SIAM J. Appl. Math., 49:1 (1989), 55–71 | DOI | MR
[4] Izhikevich, E. M., “Which Model to Use for Cortical Spiking Neurons?”, IEEE Trans. Neural Netw., 15:5 (2004), 1063–1070 | DOI
[5] Bursting: The Genesis of Rhythm in the Nervous System, eds. S. Coombes, P. C. Bressloff, World Sci., Singapore, 2005, 420 pp. | MR | Zbl
[6] Izhikevich, E. M., Desai, N. S., Walcott, E. C., and Hoppensteadt, F. C., “Bursts As a Unit of Neural Information: Selective Communication via Resonance”, Trends Neurosci., 26:3 (2003), 161–167 | DOI
[7] Hodgkin, A. L. and Huxley, A. F., “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve”, J. Physiol., 114:4 (1952), 500–544 | DOI
[8] Stankevich, N. and Mosekilde, E., “Coexistence between Silent and Bursting States in a Biophysical Hodgkin – Huxley-Type of Model”, Chaos, 27:12 (2017), 123101, 8 pp. | DOI | MR
[9] Stankevich, N. V., Mosekilde, E., and Koseska, A., “Stochastic Switching in Systems with Rare and Hidden Attractors”, Eur. Phys. J. Spec. Top., 227 (2018), 747–756 | DOI
[10] Stankevich, N. V. and Koseska, A., “Cooperative Maintainance of Cellular Identity in Systems with Intercellular Communication Defects”, Chaos, 30:1 (2020), 013144, 9 pp. | DOI | MR | Zbl
[11] Hindmarsh, J. L. and Rose, R. M., “A Model of Neuronal Bursting Using Three Coupled First Order Differential Equations”, Proc. R. Soc. Lond. Ser. B Biol. Sci., 221:1222 (1984), 87–102
[12] Shilnikov, A. and Kolomiets, M., “Methods of the Qualitative Theory for the Hindmarsh – Rose Model: A Case Study. A Tutorial”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18:8 (2008), 2141–2168 | DOI | MR | Zbl
[13] Barrio, R., Angeles Martínez, M., Serrano, S., and Shilnikov, A., “Macro- and Micro-Chaotic Structures in the Hindmarsh – Rose Model of Bursting Neurons”, Chaos, 24:2 (2014), 023128, 11 pp. | DOI | MR | Zbl
[14] Innocenti, G., Morelli, A., Genesio, R., and Torcini, A., “Dynamical Phases of the Hindmarsh – Rose Neuronal Model: Studies of the Transition from Bursting to Spiking Chaos”, Chaos, 17:4 (2007), 043128, 11 pp. | DOI | MR | Zbl
[15] Huerta, R., Rabinovich, M. I., Abarbanel, H. D. I., and Bazhenov, M., “Spike-Train Bifurcation Scaling in Two Coupled Chaotic Neurons”, Phys. Rev. E., 55:5 (1997), R2108–R2110 | DOI
[16] Holden, A. V. and Fan, Y.-Sh., “From Simple to Simple Bursting Oscillatory Behaviour via Chaos in the Rose – Hindmarsh Model for Neuronal Activity”, Chaos Solitons Fractals, 2:3 (1992), 221–236 | DOI | MR | Zbl
[17] Erichsen, R. and Brunnet, L. G., “Multistability in Networks of Hindmarsh – Rose Neurons”, Phys. Rev. E, 78:6 (2008), 061917, 6 pp. | DOI | MR
[18] Malashchenko, T., Shilnikov, A., and Cymbalyuk, G., “Six Types of Multistability in a Neuronal Model Based on Slow Calcium Current”, PLoS One, 6:7 (2011), e21782, 10 pp. | DOI
[19] Yu, H. and Peng, J., “Chaotic Synchronization and Control in Nonlinear-Coupled Hindmarsh – Rose Neural Systems”, Chaos Solitons Fractals, 29:2 (2006), 342–348 | DOI | MR | Zbl
[20] Etémé, A. S., Tabi, C. B., and Mohamadou, A., “Synchronized Nonlinear Patterns in Electrically Coupled Hindmarsh – Rose Neural Networks with Long-Range Diffusive Interactions”, Chaos Solitons Fractals, 104 (2017), 813–826 | DOI | MR | Zbl
[21] Castanedo-Guerra, I. T., Steur, E., and Nijmeijer, H., “Synchronization of Coupled Hindmarsh – Rose Neurons: Effects of an Exogenous Parameter”, IFAC-PapersOnLine, 49:14 (2016), 84–89 | DOI
[22] Garashchuk, I. R., “Asynchronous Chaos and Bifurcations in a Model of Two Coupled Identical Hindmarsh – Rose Neurons”, Russian J. Nonlinear Dyn., 17:3 (2021), 307–320 | MR | Zbl
[23] Connors, B. W. and Long, M. A., “Electrical Synapses in the Mammalian Brain”, Annu. Rev. Neurosci., 27 (2004), 393–418 | DOI
[24] Klopfenstein, R. W., “Numerical Differentiation Formulas for Stiff Systems of Ordinary Differential Equations”, RCA Rev., 32:3 (1971), 447–462 | MR
[25] Shampine, L. F. and Reichelt, M. W., “The MATLAB ODE Suite: Dedicated to C. William Gear on the Occasion of His 60th Birthday”, SIAM J. Sci. Comput., 18:1 (1997), 1–22 | DOI | MR | Zbl
[26] Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., “Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1: Theory”, Meccanica, 15:1 (1980), 9–20 | DOI | Zbl