Reducing Rotor Vibrations in Active Conical Fluid Film Bearings with Controllable Gap
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 5, pp. 873-883.

Voir la notice de l'article provenant de la source Math-Net.Ru

Despite the fact that the hydrodynamic lubrication is a self-controlled process, the rotor dynamics and energy efficiency in fluid film bearing are often the subject to be improved. We have designed control systems with adaptive PI and DQN-agent based controllers to minimize the rotor oscillations amplitude in a conical fluid film bearing. The design of the bearing allows its axial displacement and thus adjustment of its average clearance. The tests were performed using a simulation model in MATLAB software. The simulation model includes modules of a rigid shaft, a conical bearing, and a control system. The bearing module is based on numerical solution of the generalized Reynolds equation and its nonlinear approximation with fully connected neural networks. The results obtained demonstrate that both the adaptive PI controller and the DQN-based controller reduce the rotor vibrations even when imbalance in the system grows. However, the DQN-based approach provides some additional advantages in the controller designing process as well as in the system performance.
Keywords: active fluid film bearing, conical bearing, simulation modeling, DQN-agent, adaptive PI controller.
@article{ND_2022_18_5_a9,
     author = {Yu. N. Kazakov and A. V. Kornaev and D. V. Shutin and E. P. Kornaeva and L. A. Savin},
     title = {Reducing {Rotor} {Vibrations} in {Active} {Conical} {Fluid} {Film} {Bearings} with {Controllable} {Gap}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {873--883},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_5_a9/}
}
TY  - JOUR
AU  - Yu. N. Kazakov
AU  - A. V. Kornaev
AU  - D. V. Shutin
AU  - E. P. Kornaeva
AU  - L. A. Savin
TI  - Reducing Rotor Vibrations in Active Conical Fluid Film Bearings with Controllable Gap
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 873
EP  - 883
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_5_a9/
LA  - en
ID  - ND_2022_18_5_a9
ER  - 
%0 Journal Article
%A Yu. N. Kazakov
%A A. V. Kornaev
%A D. V. Shutin
%A E. P. Kornaeva
%A L. A. Savin
%T Reducing Rotor Vibrations in Active Conical Fluid Film Bearings with Controllable Gap
%J Russian journal of nonlinear dynamics
%D 2022
%P 873-883
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_5_a9/
%G en
%F ND_2022_18_5_a9
Yu. N. Kazakov; A. V. Kornaev; D. V. Shutin; E. P. Kornaeva; L. A. Savin. Reducing Rotor Vibrations in Active Conical Fluid Film Bearings with Controllable Gap. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 5, pp. 873-883. http://geodesic.mathdoc.fr/item/ND_2022_18_5_a9/

[1] Palazzolo, A. B., Lin, R. R., Alexander, R. M., Kascak, A. F., and Montague, J., “Test and Theory for Piezoelectric Actuator-Active Vibration Control of Rotating Machinery”, J. Vib. Acoust., 113:2 (1991), 167–175

[2] Aydin, Y. and Gürleyen, F., “Adaptive and Non-Adaptive Variable Structure Controls with Sliding Mode for Active Magnetic Bearings (AMBs) and Magnetic Levitation (MAGLEV) Systems: A Comparative Study”, IFAC-PapersOnLine, 49:3 (2016), 447–452

[3] Siva Srinivas, R., Tiwari, R., and Kannababu, Ch., “Application of Active Magnetic Bearings in Flexible Rotordynamic Systems: A State-of-the-Art Review”, Mech. Syst. Signal Process., 106 (2018), 537–572

[4] Di, L. and Lin, Z., “Control of a Flexible Rotor Active Magnetic Bearing Test Rig: A Characteristic Model Based All-Coefficient Adaptive Control Approach”, Control. Theory Technol., 12:1 (2014), 1–12

[5] Zhao, J., Zhang, H. T., Fan, M. C., Wu, Y., and Zhao, H., “Control of a Constrained Flexible Rotor on Active Magnetic Bearings”, IFAC-PapersOnLine, 48:28 (2015), 156–161

[6] Breńkacz, Ł., Witanowski, Ł., Drosińska-Komor, M., and Szewczuk-Krypa, N., “Research and Applications of Active Bearings: A State-of-the-Art Review”, Mech. Syst. Signal Process., 151 (2021), 107423, 39 pp.

[7] Qin, F., Li, Y., Qi, H., and Ju, L., “Advances in Compact Manufacturing for Shape and Performance Controllability of Large-Scale Components: A Review”, Chin. J. Mech. Eng., 30 (2017), 7–21

[8] Chasalevris, A. and Dohnal, F., “Improving Stability and Operation of Turbine Rotors Using Adjustable Journal Bearings”, Tribol. Int., 104 (2016), 369–382

[9] Chasalevris, A. and Dohnal, F., “Modal Interaction and Vibration Suppression in Industrial Turbines Using Adjustable Journal Bearings”, J. Phys.: Conf. Ser., 744 (2016), 012156, 12 pp.

[10] Chasalevris, A. and Dohnal, F., “Enhancing Stability of Industrial Turbines Using Adjustable Partial Arc Bearings”, J. Phys.: Conf. Ser., 744 (2016), 012152, 13 pp.

[11] Pai, R. and Parkins, D. W., “Performance Characteristics of an Innovative Journal Bearing with Adjustable Bearing Elements”, J. Tribol., 140:4 (2018), 041705, 11 pp.

[12] Krodkiewski, J. M. and Davies, G. J., “Modelling a New Three-Pad Active Bearing”, Proc. of the ASME Turbo Expo (Vienna, Austria, Jun 2004), Power for Land, Sea, and Air, 6, 799–808

[13] Cai, Z., de Queiroz, M. S., and Khonsari, M. M., “Adaptive Control of Active Tilting-Pad Bearings”, Proc. of the 2003 American Control Conference (Denver, CO, USA, Jun 2003), v. 4, 2907–2912

[14] Wu, A., de Queiroz, M. S., and Cai, Z., “Model-Based Control of Active Tilting-Pad Bearings”, IEEE/ASME Trans. Mechatronics, 12 (2007), 689–695

[15] Santos, I. F. and Watanabe, F. Y., “Compensation of Cross-Coupling Stiffness and Increase of Direct Damping in Multirecess Journal Bearings Using Active Hybrid Lubrication: Part 1. Theory”, J. Tribol., 126:1 (2004), 146–155

[16] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N. M., Erez, T., Tassa, Y., Silver, D., and Wierstra, D., “Continuous Control with Deep Reinforcement Learning”, Proc. of the 4th Internat. Conf. on Learning Representations (ICLR, San Juan, Puerto Rico, May 2016), eds. Y. Bengio, Y. LeCun, 14

[17] Buşoniu, L., de Bruin, T., Tolić, D., Kober, J., and Palunko, I., “Reinforcement Learning for Control: Performance, Stability, and Deep Approximators,"\”, Annu. Rev. Control, 46 (2018), 8–28

[18] Tarun, Bh. S., “Vision-Based Reinforcement Learning Controller of Robotic Arm Manipulator”, Graduation Project Report for the Master Thesis, Eindhoven, Eindhoven University of Technology, 2021, 36 pp.

[19] Yeo, S., Naing, Y., Kim, T., and Oh, S., “Achieving Balanced Load Distribution with Reinforcement Learning-Based Switch Migration in Distributed SDN Controllers”, Electronics, 10:2 (2021), 162, 16 pp.

[20] Kim, J.-B., Lim, H.-K., Kim, Ch.-M., Kim, M.-S., Hong, Y.-G., and Han, Y.-H., “Imitation Reinforcement Learning-Based Remote Rotary Inverted Pendulum Control in OpenFlow Network”, IEEE Access, 7 (2019), 36682–36690

[21] Berglund, D. and Larsson, N., Controlling a Hydraulic System Using Reinforcement Learning: Implementation and Validation of a DQN-Agent on a Hydraulic Multi-Chamber Cylinder System, Master's Thesis, Linköping University, Linköping, 2021, 78 pp.

[22] Hori, Y., Hydrodynamic Lubrication, Springer, Tokyo, 2006, XII, 231 pp.

[23] Kornaev, A. V., Kornaev, N. V., Kornaeva, E. P., and Savin, L. A., “Application of Artificial Neural Networks to Calculation of Oil Film Reaction Forces and Dynamics of Rotors on Journal Bearings”, Int. J. Rotating Mach., 2017 (2017), ID 9196701, 11 pp.

[24] Kazakov, Yu. N., Kornaev, A. V., Shutin, D. V., Li, Sh., and Savin, L. A., “Active Fluid-Film Bearing With Deep Q-Network Agent-Based Control System”, J. Tribol., 144:8 (2022), 081803, 12 pp.

[25] Train DQN Agent to Swing Up and Balance Pendulum, , 2022 https://www.mathworks.com/help/reinforcement-learning/ug/train-dqn-agent-to-swing-up-and-balance-pendulum.html