Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_5_a6, author = {A. D. Shamraev and S. A. Kolyubin}, title = {Bioinspired and {Energy-Efficient} {Convex} {Model}}, journal = {Russian journal of nonlinear dynamics}, pages = {831--841}, publisher = {mathdoc}, volume = {18}, number = {5}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_5_a6/} }
A. D. Shamraev; S. A. Kolyubin. Bioinspired and Energy-Efficient Convex Model. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 5, pp. 831-841. http://geodesic.mathdoc.fr/item/ND_2022_18_5_a6/
[1] Raibert, M. H., Legged Robots That Balance, MIT Press, Cambridge, Mass., 1986, 205 pp.
[2] Di Carlo, J., Software and Control Design for the MIT Cheetah Quadruped Robots, Master's Thesis, Massachusetts Institute of Technology, Cambridge, Mass., 2020, 100 pp.
[3] Kim, D., Lee, J., Ahn, J., Campbell, O., Hwang, H., and Sentis, L., “Computationally-Robust and Efficient Prioritized Whole-Body Controller with Contact Constraints”, IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (IROS, Madrid, Spain, Oct 2018), 5987–5994
[4] Di Carlo, J., Wensing, P. M., Katz, B., Bledt, G., and Kim, S., “Dynamic Locomotion in the MIT Cheetah 3 through Convex Model-Predictive Control”, IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (IROS, Madrid, Spain, Oct 2018), 7440–7447
[5] Bledt, G., Wensing, P. M., and Kim, S., “Policy-Regularized Model Predictive Control to Stabilize Diverse Quadrupedal Gaits for the MIT Cheetah”, IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (IROS, Vancouver, Canada, Sep 2017), 4102–4109
[6] Bledt, G. and Kim, S., “Implementing Regularized Predictive Control for Simultaneous Real-Time Footstep and Ground Reaction Force Optimization”, IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (IROS, Macau, China, Nov 2019), 6316–6323
[7] Bledt, G. and Kim, S., “Extracting Legged Locomotion Heuristics with Regularized Predictive Control”, 2020 IEEE International Conf. on Robotics and Automation (ICRA, Paris, France, May–Aug 2020), 406–412
[8] Bledt, G., Regularized Predictive Control Framework for Robust Dynamic Legged Locomotion, PhD Thesis, Massachusetts Institute of Technology, Cambridge, Mass., 2020, 160 pp.
[9] Kim, D., Di Carlo, J., Katz, B., Bledt, G., and Kim, S., Highly Dynamic Quadruped Locomotion via Whole-Body Impulse Control and Model Predictive Control, 2019, 8 pp., arXiv: 1909.06586 [cs.RO]
[10] Dudzik, T., Chignoli, M., Bledt, G., and Kim, S., “Robust Autonomous Navigation of a Small-Scale Quadruped Robot in Real-World Environments”, 2020 IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (IROS, Las Vegas, Nev., Oct 2020), 3664–3671
[11] Kim, D., Carballo, D., Di Carlo, J., Katz, B., Bledt, G., Lim, B., and Kim, S., “Vision Aided Dynamic Exploration of Unstructured Terrain with a Small-Scale Quadruped Robot”, 2020 IEEE International Conf. on Robotics and Automation (ICRA, Paris, France, May–Aug 2020), 2464–2470
[12] Margolis, G. B., Chen, T., Paigwar, K., Fu, X., Kim, D., Kim, S., and Agrawal, P., “Learning to Jump from Pixels”, Proc. Mach. Learn. Res., 164 (2022), 1025–1034
[13] Boussema, C., Powell, M. J., Bledt, G., Ijspeert, A. J., Wensing, P. M., and Kim, S., “Online Gait Transitions and Disturbance Recovery for Legged Robots via the Feasible Impulse Set”, IEEE Robot. Autom. Lett., 4:2 (2019), 1611–1618
[14] Carius, J., Farshidian, F., and Hutter, M., “MPC-Net: A First Principles Guided Policy Search”, IEEE Robot. Autom. Lett., 5:2 (2020), 2897–2904
[15] Peng, X. B., Coumans, E., Zhang, T., Lee, T.-W. E., Tan, J., and Levine, S., Learning Agile Robotic Locomotion Skills by Imitating Animals, 2020, arXiv: 2004.00784 [cs.RO]
[16] Green, K., Godse, Y., Dao, J., Hatton, R. L., Fern, A., and Hurst, J., “Learning Spring Mass Locomotion: Guiding Policies with a Reduced-Order Model”, IEEE Robot. Autom. Lett., 6:2 (2021), 3926–3932
[17] Li, H., Frei, R. J., and Wensing, P. M., “Model Hierarchy Predictive Control of Robotic Systems”, IEEE Robot. Autom. Lett., 6:2 (2021), 3373–3380
[18] Craig, J. J., Introduction to Robotics: Mechanics and Control, 3rd ed, Pearson, New York, 2004, 408 pp.
[19] Bledt, G., Powell, M. J., Katz, B., Di Carlo, J., Wensing, P. M., and Kim, S., “MIT Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot”, Proc. of the 2018 IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (IROS, Madrid, Spain, Oct 2018), 2245–2252 \itemsep=2pt
[20] Geyer, H., Seyfarth, A., and Blickhan, R., “Compliant Leg Behaviour Explains Basic Dynamics of Walking and Running”, Proc. R. Soc. Lond. Ser. B Biol. Sci., 273:1603 (2006), 2861–2867
[21] Kuo, A. D., “The Relative Roles of Feedforward and Feedback in the Control of Rhythmic Movements”, Motor Control, 6:2 (2002), 129–145
[22] Ryczko, D., Simon, A., and Ijspeert, A. J., “Walking with Salamanders: From Molecules to Biorobotics”, Trends Neurosci., 43:11 (2020), 916–930
[23] Grandia, R., Jenelten, F., Yang, Sh., Farshidian, F., and Hutter, M., Perceptive Locomotion through Nonlinear Model Predictive Control, 2022, 20 pp., arXiv: 2208.08373 [cs.RO]