Bioinspired and Energy-Efficient Convex Model
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 5, pp. 831-841

Voir la notice de l'article provenant de la source Math-Net.Ru

Animal running has been studied for a long time, but until now robots cannot repeat the same movements with energy efficiency close to animals. There are many controllers for con- trolling the movement of four-legged robots. One of the most popular is the convex MPC. This paper presents a bioinspirational approach to increasing the energy efficiency of the state-of-the- art convex MPC controller. This approach is to set a reference trajectory for the convex MPC in the form of an SLIP model, which describes the movements of animals when running. Adding an SLIP trajectory increases the energy efficiency of the Pronk gait by 15 percent over a range of speed from 0.75 m/s to 1.75 m/s.
Keywords: quadruped, model predictive control, spring-loaded inverted pendulum, energy efficiency.
Mots-clés : bioinspiration
@article{ND_2022_18_5_a6,
     author = {A. D. Shamraev and S. A. Kolyubin},
     title = {Bioinspired and {Energy-Efficient} {Convex} {Model}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {831--841},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_5_a6/}
}
TY  - JOUR
AU  - A. D. Shamraev
AU  - S. A. Kolyubin
TI  - Bioinspired and Energy-Efficient Convex Model
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 831
EP  - 841
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_5_a6/
LA  - en
ID  - ND_2022_18_5_a6
ER  - 
%0 Journal Article
%A A. D. Shamraev
%A S. A. Kolyubin
%T Bioinspired and Energy-Efficient Convex Model
%J Russian journal of nonlinear dynamics
%D 2022
%P 831-841
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_5_a6/
%G en
%F ND_2022_18_5_a6
A. D. Shamraev; S. A. Kolyubin. Bioinspired and Energy-Efficient Convex Model. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 5, pp. 831-841. http://geodesic.mathdoc.fr/item/ND_2022_18_5_a6/