Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_5_a13, author = {P. Astafyeva and O. Kiselev}, title = {Formal {Asymptotics} of {Parametric} {Subresonance}}, journal = {Russian journal of nonlinear dynamics}, pages = {927--937}, publisher = {mathdoc}, volume = {18}, number = {5}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_5_a13/} }
P. Astafyeva; O. Kiselev. Formal Asymptotics of Parametric Subresonance. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 5, pp. 927-937. http://geodesic.mathdoc.fr/item/ND_2022_18_5_a13/
[1] Floquet, S., “Sur les équations différentielles linéaires à cofficients périodiques,”, Ann. Sci. École Norm. Sup. (2), 12 (1883), 47–88
[2] Arnol'd, V. I., “Small Denominators and Problems of Stability of Motion in Classical and Celestial Mechanics”, Uspekhi Mat. Nauk, 18:6 (114) (1963), 91–192 (Russian)
[3] Bogoliubov, N. N. and Mitropolsky, Yu. A., Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon Breach, New York, 1961, x+537 pp.
[4] Sharma, A. and Sinha, S. C., “An Approximate Analysis of Quasi-Periodic Systems via Floquet Theory”, J. Comput. Nonlinear Dynam., 13:2 (2018), 021008, 18 pp.
[5] Broer, H. and Simó, C., “Hill's Equation with Quasi-Periodic Forcing: Resonance Tongues, Instability Pockets and Global Phenomena”, Bol. Soc. Brasil. Mat. (N. S.), 29:2 (1998), 253–293
[6] Puig, J. and Simó, C., “Resonance Tongues and Spectral Gaps in Quasi-Periodic Schrödinger Operators with One or More Frequencies. A Numerical Exploration”, J. Dyn. Diff. Equat., 23:3 (2011), 649–669
[7] Funktsional. Anal. i Prilozhen., 9:4 (1975), 8–21 (Russian)
[8] Perko, L. M., “Higher Order Averaging and Related Methods for Perturbed Periodic and Quasi-Periodic Systems”, SIAM J. Appl. Math., 17:4 (1968), 698–724
[9] Davis, S. H. and Rosenblat, S., “A Quasiperiodic Mathieu – Hill Equation”, SIAM J. Appl. Math., 38:1 (1980), 139–155
[10] Kovacic, I., Rand, R., and Sah, S. M., “Mathieu's Equation and Its Generalizations: Overview of Stability Charts and Their Features”, Appl. Mech. Rev., 70:2 (2018), 020802, 22 pp.
[11] Vetchanin, E. V. and Mikishanina, E. A., “Vibrational Stability of Periodic Solutions of the Liouville Equations”, Russian J. Nonlinear Dyn., 15:3 (2019), 351–363
[12] Mamaev, I. S. and Vetchanin, E. V., “Dynamics of Rubber Chaplygin Sphere under Periodic Control”, Regul. Chaotic Dyn., 25:2 (2020), 215–236
[13] Whittaker, E. T. and Watson, G. N., A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1996, vi+608 pp.
[14] Sternkopf, Ch., Diethold, Ch., Gerhardt, U., Wurmus, J., and Manske, E., “Heterodyne Interferometer Laser Source with a Pair of Two Phase Locked Loop Coupled He–Ne Lasers by $632.8$ nm”, Meas. Sci. Technol., 23:7 (2012), 074006, 6 pp.
[15] Eremin, A., Golub, M., Glushkov, E., and Glushkova, N., “Identification of Delamination Based on the Lamb Wave Scattering Resonance Frequencies”, NDT E Int., 103 (2019), 145–153
[16] Peale, S. J., “Orbital Resonances in the Solar System”, Annu. Rev. Astron. Astrophys., 14 (1976), 215–246
[17] Hill, G. W., On the Part of the Motion of the Lunar Perigee Which Is a Function of the Mean Motions of the Sun and Moon, Wilson, Cambridge, Mass., 1877, 28 pp.
[18] Levitan, B. M., Almost Periodic Functions, GITTL, Moscow, 1953, 396 pp. (Russian)
[19] Levitan, B. M. and Zhikov, V. V., Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, Cambridge, 1983, 224 pp.
[20] Maxima: A Computer Algebra System, , 2022 https://maxima.sourceforge.io/index.html
[21] Astafyeva, P. Yu. and Kiselev, O. M., “Subresonant Solutions of the Linear Oscillator Equation”, Proc. of the Internat. Conf. on Nonlinearity, Information and Robotics (Innopolis, Russia, Aug 2021), 90–94
[22] Olver, F. W. J., Asymptotics and Special Functions, Acad. Press, New York, 1974, xvi, 572 pp.
[23] Glebov, S. G., Kiselev, O. M., and Tarkhanov, N. N., Nonlinear Equations with Small Parameter: Vol. 1. Oscillations and Resonances, De Gruyter Series in Nonlinear Analysis and Applications, 23/1, de Gruyter, New York, 2017, 357 pp.