Formal Asymptotics of Parametric Subresonance
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 5, pp. 927-937

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to a comprehensive study of linear equations of the second order with an almost periodic coefficient. Using an asymptotic approach, the system of equations for parametric subresonant growth of the amplitude of oscillations is obtained. Moreover, the time of a turning point from the growth of the amplitude to the bounded oscillations in the slow variable is found. Also, a comparison between the asymptotic approximation for the turning time and the numerical one is shown.
Keywords: classical analysis and ODEs, almost periodic function,small denominator.
Mots-clés : subresonant
@article{ND_2022_18_5_a13,
     author = {P. Astafyeva and O. Kiselev},
     title = {Formal {Asymptotics} of {Parametric} {Subresonance}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {927--937},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_5_a13/}
}
TY  - JOUR
AU  - P. Astafyeva
AU  - O. Kiselev
TI  - Formal Asymptotics of Parametric Subresonance
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 927
EP  - 937
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_5_a13/
LA  - en
ID  - ND_2022_18_5_a13
ER  - 
%0 Journal Article
%A P. Astafyeva
%A O. Kiselev
%T Formal Asymptotics of Parametric Subresonance
%J Russian journal of nonlinear dynamics
%D 2022
%P 927-937
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_5_a13/
%G en
%F ND_2022_18_5_a13
P. Astafyeva; O. Kiselev. Formal Asymptotics of Parametric Subresonance. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 5, pp. 927-937. http://geodesic.mathdoc.fr/item/ND_2022_18_5_a13/