Formal Asymptotics of Parametric Subresonance
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 5, pp. 927-937.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to a comprehensive study of linear equations of the second order with an almost periodic coefficient. Using an asymptotic approach, the system of equations for parametric subresonant growth of the amplitude of oscillations is obtained. Moreover, the time of a turning point from the growth of the amplitude to the bounded oscillations in the slow variable is found. Also, a comparison between the asymptotic approximation for the turning time and the numerical one is shown.
Keywords: classical analysis and ODEs, almost periodic function,small denominator.
Mots-clés : subresonant
@article{ND_2022_18_5_a13,
     author = {P. Astafyeva and O. Kiselev},
     title = {Formal {Asymptotics} of {Parametric} {Subresonance}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {927--937},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_5_a13/}
}
TY  - JOUR
AU  - P. Astafyeva
AU  - O. Kiselev
TI  - Formal Asymptotics of Parametric Subresonance
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 927
EP  - 937
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_5_a13/
LA  - en
ID  - ND_2022_18_5_a13
ER  - 
%0 Journal Article
%A P. Astafyeva
%A O. Kiselev
%T Formal Asymptotics of Parametric Subresonance
%J Russian journal of nonlinear dynamics
%D 2022
%P 927-937
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_5_a13/
%G en
%F ND_2022_18_5_a13
P. Astafyeva; O. Kiselev. Formal Asymptotics of Parametric Subresonance. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 5, pp. 927-937. http://geodesic.mathdoc.fr/item/ND_2022_18_5_a13/

[1] Floquet, S., “Sur les équations différentielles linéaires à cofficients périodiques,”, Ann. Sci. École Norm. Sup. (2), 12 (1883), 47–88

[2] Arnol'd, V. I., “Small Denominators and Problems of Stability of Motion in Classical and Celestial Mechanics”, Uspekhi Mat. Nauk, 18:6 (114) (1963), 91–192 (Russian)

[3] Bogoliubov, N. N. and Mitropolsky, Yu. A., Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon Breach, New York, 1961, x+537 pp.

[4] Sharma, A. and Sinha, S. C., “An Approximate Analysis of Quasi-Periodic Systems via Floquet Theory”, J. Comput. Nonlinear Dynam., 13:2 (2018), 021008, 18 pp.

[5] Broer, H. and Simó, C., “Hill's Equation with Quasi-Periodic Forcing: Resonance Tongues, Instability Pockets and Global Phenomena”, Bol. Soc. Brasil. Mat. (N. S.), 29:2 (1998), 253–293

[6] Puig, J. and Simó, C., “Resonance Tongues and Spectral Gaps in Quasi-Periodic Schrödinger Operators with One or More Frequencies. A Numerical Exploration”, J. Dyn. Diff. Equat., 23:3 (2011), 649–669

[7] Funktsional. Anal. i Prilozhen., 9:4 (1975), 8–21 (Russian)

[8] Perko, L. M., “Higher Order Averaging and Related Methods for Perturbed Periodic and Quasi-Periodic Systems”, SIAM J. Appl. Math., 17:4 (1968), 698–724

[9] Davis, S. H. and Rosenblat, S., “A Quasiperiodic Mathieu – Hill Equation”, SIAM J. Appl. Math., 38:1 (1980), 139–155

[10] Kovacic, I., Rand, R., and Sah, S. M., “Mathieu's Equation and Its Generalizations: Overview of Stability Charts and Their Features”, Appl. Mech. Rev., 70:2 (2018), 020802, 22 pp.

[11] Vetchanin, E. V. and Mikishanina, E. A., “Vibrational Stability of Periodic Solutions of the Liouville Equations”, Russian J. Nonlinear Dyn., 15:3 (2019), 351–363

[12] Mamaev, I. S. and Vetchanin, E. V., “Dynamics of Rubber Chaplygin Sphere under Periodic Control”, Regul. Chaotic Dyn., 25:2 (2020), 215–236

[13] Whittaker, E. T. and Watson, G. N., A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1996, vi+608 pp.

[14] Sternkopf, Ch., Diethold, Ch., Gerhardt, U., Wurmus, J., and Manske, E., “Heterodyne Interferometer Laser Source with a Pair of Two Phase Locked Loop Coupled He–Ne Lasers by $632.8$ nm”, Meas. Sci. Technol., 23:7 (2012), 074006, 6 pp.

[15] Eremin, A., Golub, M., Glushkov, E., and Glushkova, N., “Identification of Delamination Based on the Lamb Wave Scattering Resonance Frequencies”, NDT E Int., 103 (2019), 145–153

[16] Peale, S. J., “Orbital Resonances in the Solar System”, Annu. Rev. Astron. Astrophys., 14 (1976), 215–246

[17] Hill, G. W., On the Part of the Motion of the Lunar Perigee Which Is a Function of the Mean Motions of the Sun and Moon, Wilson, Cambridge, Mass., 1877, 28 pp.

[18] Levitan, B. M., Almost Periodic Functions, GITTL, Moscow, 1953, 396 pp. (Russian)

[19] Levitan, B. M. and Zhikov, V. V., Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, Cambridge, 1983, 224 pp.

[20] Maxima: A Computer Algebra System, , 2022 https://maxima.sourceforge.io/index.html

[21] Astafyeva, P. Yu. and Kiselev, O. M., “Subresonant Solutions of the Linear Oscillator Equation”, Proc. of the Internat. Conf. on Nonlinearity, Information and Robotics (Innopolis, Russia, Aug 2021), 90–94

[22] Olver, F. W. J., Asymptotics and Special Functions, Acad. Press, New York, 1974, xvi, 572 pp.

[23] Glebov, S. G., Kiselev, O. M., and Tarkhanov, N. N., Nonlinear Equations with Small Parameter: Vol. 1. Oscillations and Resonances, De Gruyter Series in Nonlinear Analysis and Applications, 23/1, de Gruyter, New York, 2017, 357 pp.