On the Stability of the System of Thomson’s Vortex
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 5, pp. 915-926

Voir la notice de l'article provenant de la source Math-Net.Ru

The stability problem of a moving circular cylinder of radius $R$ and a system of n identical point vortices uniformly distributed on a circle of radius $R_0$, with $n \geqslant 2$, is considered. The center of the vortex polygon coincides with the center of the cylinder. The circulation around the cylinder is zero. There are three parameters in the problem: the number of point vortices n, the added mass of the cylinder a and the parameter $q = \frac{R^2}{R^2_0}$. The linearization matrix and the quadratic part of the Hamiltonian of the problem are studied. As a result, the parameter space of the problem is divided into the instability area and the area of linear stability where nonlinear analysis is required. In the case $n = 2, 3$ two domains of linear stability are found. In the case $n = 4, 5, 6$ there is just one domain. In the case $n \geqslant 7$ the studied solution is unstable for any value of the problem parameters. The obtained results in the limiting case as $a \rightarrow \infty$ agree with the known results for the model of point vortices outside the circular domain.
Keywords: point vortices, Hamiltonian equation, Thomson’s polygon, stability.
@article{ND_2022_18_5_a12,
     author = {L. G. Kurakin and I. V. Ostrovskaya},
     title = {On the {Stability} of the {System} of {Thomson{\textquoteright}s} {Vortex}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {915--926},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_5_a12/}
}
TY  - JOUR
AU  - L. G. Kurakin
AU  - I. V. Ostrovskaya
TI  - On the Stability of the System of Thomson’s Vortex
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 915
EP  - 926
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_5_a12/
LA  - en
ID  - ND_2022_18_5_a12
ER  - 
%0 Journal Article
%A L. G. Kurakin
%A I. V. Ostrovskaya
%T On the Stability of the System of Thomson’s Vortex
%J Russian journal of nonlinear dynamics
%D 2022
%P 915-926
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_5_a12/
%G en
%F ND_2022_18_5_a12
L. G. Kurakin; I. V. Ostrovskaya. On the Stability of the System of Thomson’s Vortex. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 5, pp. 915-926. http://geodesic.mathdoc.fr/item/ND_2022_18_5_a12/