Motion Control of a Spherical Robot with a Pendulum
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 5, pp. 899-913.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of controlling the rolling of a spherical robot with a pendulum actuator pursuing a moving target by the pursuit method, but with a minimal control, is considered. The mathe- matical model assumes the presence of a number of holonomic and nonholonomic constraints, as well as the presence of two servo-constraints containing a control function. The control function is defined in accordance with the features of the simulated scenario. Servo-constraints set the motion program. To implement the motion program, the pendulum actuator generates a control torque which is obtained from the joint solution of the equations of motion and derivatives of servo-constraints. The first and second components of the control torque vector are determined in a unique way, and the third component is determined from the condition of minimizing the square of the control torque. The system of equations of motion after reduction for a given control function is reduced to a nonautonomous system of six equations. A rigorous proof of the boundedness of the distance function between a spherical robot and a target moving at a bounded velocity is given. The cases where objects move in a straight line and along a curved trajectory are considered. Based on numerical integration, solutions are obtained, graphs of the desired mechanical parameters are plotted, and the trajectory of the target and the trajectory of the spherical robot are constructed.
Keywords: spherical robot, pendulum actuator, control, nonholonomic constraint, pursuit, target.
Mots-clés : equations of motion, servo-constraint
@article{ND_2022_18_5_a11,
     author = {E. A. Mikishanina},
     title = {Motion {Control} of a {Spherical} {Robot} with a {Pendulum}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {899--913},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_5_a11/}
}
TY  - JOUR
AU  - E. A. Mikishanina
TI  - Motion Control of a Spherical Robot with a Pendulum
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 899
EP  - 913
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_5_a11/
LA  - en
ID  - ND_2022_18_5_a11
ER  - 
%0 Journal Article
%A E. A. Mikishanina
%T Motion Control of a Spherical Robot with a Pendulum
%J Russian journal of nonlinear dynamics
%D 2022
%P 899-913
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_5_a11/
%G en
%F ND_2022_18_5_a11
E. A. Mikishanina. Motion Control of a Spherical Robot with a Pendulum. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 5, pp. 899-913. http://geodesic.mathdoc.fr/item/ND_2022_18_5_a11/

[1] Putkaradze, V. and Rogers, S., “On the Optimal Control of a Rolling Ball Robot Actuated by Internal Point Masses”, J. Dyn. Sys. Meas. Control, 142:5 (2020), 051002, 22 pp.

[2] Climbing and Walking Robots: Towards New Applications, ed. H. Zhang, InTech, Vienna, 2007, 546 pp.

[3] Ilin, K. I., Moffatt, H. K., and Vladimirov, V. A., “Dynamics of a Rolling Robot”, Proc. Natl. Acad. Sci. USA, 114:49 (2017), 12858–12863

[4] Hernández, J. D., Barrientos, J., del Cerro, J., Barrientos, A., and Sanz, D., “Moisture Measurement in Crops Using Spherical Robots”, Ind. Rob., 40:1 (2013), 59–66

[5] Math. Sb., 24:1 (1903), 139–168. (Russian)

[6] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “The Problem of Drift and Recurrence for the Rolling Chaplygin Ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859

[7] Borisov, A. V. and Mikishanina, E. A., “Dynamics of the Chaplygin Ball with Variable Parameters”, Russian J. Nonlinear Dyn., 16:3 (2020), 453–462

[8] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “Dynamics of the Chaplygin Ball on a Rotating Plane”, Russ. J. Math. Phys., 25:4 (2018), 423–433

[9] Prikl. Mat. Mekh., 47:6 (1983), 916–921 (Russian)

[10] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “Different Models of Rolling for a Robot Ball on a Plane As a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582

[11] Mamaev, I. S. and Vetchanin, E. V., “Dynamics of Rubber Chaplygin Sphere under Periodic Control”, Regul. Chaotic Dyn., 25:2 (2020), 215–236

[12] Kilin, A. A., “The Dynamics of Chaplygin Ball: The Qualitative and Computer Analysis”, Regul. Chaotic Dyn., 6:3 (2001), 291–306

[13] Schneider, D., “Nonholonomic Euler – Poincaré Equations and Stability in Chaplygin's Sphere”, Dyn. Syst., 17:2 (2002), 87–130

[14] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “How to Control Chaplygin's Sphere Using Rotors”, Regul. Chaotic Dyn., 17:3–4 (2012), 258–272

[15] Gajbhiye, S. and Banavar, R. N., “Geometric Modeling and Local Controllability of a Spherical Mobile Robot Actuated by an Internal Pendulum”, Internat. J. Robust Nonlinear Control, 26:11 (2016), 2436–2454

[16] Bolotin, S. V., “The Problem of Optimal Control of a Chaplygin Ball by Internal Rotors”, Regul. Chaotic Dyn., 17:6 (2012), 559–570

[17] Dokl. Akad. Nauk, 485:3 (2019), 285–289 (Russian)

[18] Béghin, M. H., Étude théorique des compas gyrostatiques Anschütz et Sperry, Impr. nationale, Paris, 1921, 132 pp.

[19] Appel, P., Traité de Mécanique rationnelle: Vol. 2. Dynamique des systèmes. Mécanique analytique, 6th ed, Gauthier-Villars, Paris, 1953, 584 pp.

[20] Azizov, A. G., “On the Dynamics of Systems Constrained by Servo-Constraints”, Nauch. Trudy TashGU, 1971, no. 397, 3–9 (Russian)

[21] Prikl. Mat. Mekh., 54:3 (1990), 366–372 (Russian)

[22] Teshaev, M., “To the Problem of Motion Stabilization of Mechanical Systems Constrained by Geomtric and Kinematic Servo-Constraints ??????????????????7”, Izv. Vyssh. Uchebn. Zaved. Povolzhsk. Region. Fiz.-Mat. Nauki, 2009, no. 4 (12), 27–38 (Russian)

[23] Teshaev, M., “On the Design of Reactions of Servo-Constraints of Systems Constrained by Kinematic Constraints”, Probl. Mekh., 2005, no. 1, 3–7 (Russian)

[24] Kozlov, V. V., “Principles of Dynamics and Servoconstraints”, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1989, no. 5, 59–66 (Russian)

[25] Kozlov, V. V., “The Dynamics of Systems with Servoconstraints: 1,”, Regul. Chaotic Dyn., 20:3 (2015), 205–224

[26] Kozlov, V. V., “The Dynamics of Systems with Servoconstraints: 2”, Regul. Chaotic Dyn., 20:4 (2015), 401–427

[27] Tatarinov, Ya. V., Equations of Classical Mechanics in Concise Forms, MGU, Moscow, 2005, 88 pp. (Russian)

[28] Bajodah, A. H., Hodges, D. H., and Chen, Y. H., “Inverse Dynamics of Servo-Constraints Based on the Generalized Inverse”, Nonlinear Dyn., 39:1 (2005), 179–196

[29] Chen, Y. H., “Mechanical Systems under Servo-Constraints: The Lagrange's Approach”, Mechatronics, 15:3 (2005), 317–337

[30] Altmann, R. and Heiland, J., “Simulation of Multibody Systems with Servo Constraints through Optimal Control”, Multibody Syst. Dyn., 40:1 (2017), 75–98

[31] Betsch, P., Altmann, R., and Yang, Y., “Numerical Integration of Underactuated Mechanical Systems Subjected to Mixed Holonomic and Servo Constraints”, Multibody Dynamics, Comput. Methods Appl. Sci., 42, ed. J. M. Font-Llagunes, Springer, Cham, 2016, 1–18

[32] Prikl. Mat. Mekh., 31:3 (1967), 433–446 (Russian)

[33] Borisov, A. V. and Mamaev, I. S., “Two Non-Holonomic Integrable Problems Tracing Back to Chaplygin”, Regul. Chaotic Dyn., 17:2 (2012), 191–198

[34] Ivanova, T. B. and Pivovarova, E. N., “Dynamics and Control of a Spherical Robot with an Axisymmetric Pendulum Actuator”, Nelin. Dinam., 9:3 (2013), 507–520 (Russian)

[35] Teor. Mat. Fiz., 211:2 (2022), 281–294 (Russian)

[36] Kilin, A. A., Pivovarova, E. N., and Ivanova, T. B., “Spherical Robot of Combined Type: Dynamics and Control”, Regul. Chaotic Dyn., 20:6 (2015), 716–728

[37] Ivanova, T. B., Kilin, A. A., and Pivovarova, E. N., “Controlled Motion of a Spherical Robot with Feedback: 1”, J. Dyn. Control Syst., 24:3 (2018), 497–510

[38] Izv. Ross. Akad. Nauk. Teor. Sist. Upr., 2013, no. 4, 150–163 (Ruussian)