Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_5_a11, author = {E. A. Mikishanina}, title = {Motion {Control} of a {Spherical} {Robot} with a {Pendulum}}, journal = {Russian journal of nonlinear dynamics}, pages = {899--913}, publisher = {mathdoc}, volume = {18}, number = {5}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_5_a11/} }
E. A. Mikishanina. Motion Control of a Spherical Robot with a Pendulum. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 5, pp. 899-913. http://geodesic.mathdoc.fr/item/ND_2022_18_5_a11/
[1] Putkaradze, V. and Rogers, S., “On the Optimal Control of a Rolling Ball Robot Actuated by Internal Point Masses”, J. Dyn. Sys. Meas. Control, 142:5 (2020), 051002, 22 pp.
[2] Climbing and Walking Robots: Towards New Applications, ed. H. Zhang, InTech, Vienna, 2007, 546 pp.
[3] Ilin, K. I., Moffatt, H. K., and Vladimirov, V. A., “Dynamics of a Rolling Robot”, Proc. Natl. Acad. Sci. USA, 114:49 (2017), 12858–12863
[4] Hernández, J. D., Barrientos, J., del Cerro, J., Barrientos, A., and Sanz, D., “Moisture Measurement in Crops Using Spherical Robots”, Ind. Rob., 40:1 (2013), 59–66
[5] Math. Sb., 24:1 (1903), 139–168. (Russian)
[6] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “The Problem of Drift and Recurrence for the Rolling Chaplygin Ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859
[7] Borisov, A. V. and Mikishanina, E. A., “Dynamics of the Chaplygin Ball with Variable Parameters”, Russian J. Nonlinear Dyn., 16:3 (2020), 453–462
[8] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “Dynamics of the Chaplygin Ball on a Rotating Plane”, Russ. J. Math. Phys., 25:4 (2018), 423–433
[9] Prikl. Mat. Mekh., 47:6 (1983), 916–921 (Russian)
[10] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “Different Models of Rolling for a Robot Ball on a Plane As a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582
[11] Mamaev, I. S. and Vetchanin, E. V., “Dynamics of Rubber Chaplygin Sphere under Periodic Control”, Regul. Chaotic Dyn., 25:2 (2020), 215–236
[12] Kilin, A. A., “The Dynamics of Chaplygin Ball: The Qualitative and Computer Analysis”, Regul. Chaotic Dyn., 6:3 (2001), 291–306
[13] Schneider, D., “Nonholonomic Euler – Poincaré Equations and Stability in Chaplygin's Sphere”, Dyn. Syst., 17:2 (2002), 87–130
[14] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “How to Control Chaplygin's Sphere Using Rotors”, Regul. Chaotic Dyn., 17:3–4 (2012), 258–272
[15] Gajbhiye, S. and Banavar, R. N., “Geometric Modeling and Local Controllability of a Spherical Mobile Robot Actuated by an Internal Pendulum”, Internat. J. Robust Nonlinear Control, 26:11 (2016), 2436–2454
[16] Bolotin, S. V., “The Problem of Optimal Control of a Chaplygin Ball by Internal Rotors”, Regul. Chaotic Dyn., 17:6 (2012), 559–570
[17] Dokl. Akad. Nauk, 485:3 (2019), 285–289 (Russian)
[18] Béghin, M. H., Étude théorique des compas gyrostatiques Anschütz et Sperry, Impr. nationale, Paris, 1921, 132 pp.
[19] Appel, P., Traité de Mécanique rationnelle: Vol. 2. Dynamique des systèmes. Mécanique analytique, 6th ed, Gauthier-Villars, Paris, 1953, 584 pp.
[20] Azizov, A. G., “On the Dynamics of Systems Constrained by Servo-Constraints”, Nauch. Trudy TashGU, 1971, no. 397, 3–9 (Russian)
[21] Prikl. Mat. Mekh., 54:3 (1990), 366–372 (Russian)
[22] Teshaev, M., “To the Problem of Motion Stabilization of Mechanical Systems Constrained by Geomtric and Kinematic Servo-Constraints ??????????????????7”, Izv. Vyssh. Uchebn. Zaved. Povolzhsk. Region. Fiz.-Mat. Nauki, 2009, no. 4 (12), 27–38 (Russian)
[23] Teshaev, M., “On the Design of Reactions of Servo-Constraints of Systems Constrained by Kinematic Constraints”, Probl. Mekh., 2005, no. 1, 3–7 (Russian)
[24] Kozlov, V. V., “Principles of Dynamics and Servoconstraints”, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1989, no. 5, 59–66 (Russian)
[25] Kozlov, V. V., “The Dynamics of Systems with Servoconstraints: 1,”, Regul. Chaotic Dyn., 20:3 (2015), 205–224
[26] Kozlov, V. V., “The Dynamics of Systems with Servoconstraints: 2”, Regul. Chaotic Dyn., 20:4 (2015), 401–427
[27] Tatarinov, Ya. V., Equations of Classical Mechanics in Concise Forms, MGU, Moscow, 2005, 88 pp. (Russian)
[28] Bajodah, A. H., Hodges, D. H., and Chen, Y. H., “Inverse Dynamics of Servo-Constraints Based on the Generalized Inverse”, Nonlinear Dyn., 39:1 (2005), 179–196
[29] Chen, Y. H., “Mechanical Systems under Servo-Constraints: The Lagrange's Approach”, Mechatronics, 15:3 (2005), 317–337
[30] Altmann, R. and Heiland, J., “Simulation of Multibody Systems with Servo Constraints through Optimal Control”, Multibody Syst. Dyn., 40:1 (2017), 75–98
[31] Betsch, P., Altmann, R., and Yang, Y., “Numerical Integration of Underactuated Mechanical Systems Subjected to Mixed Holonomic and Servo Constraints”, Multibody Dynamics, Comput. Methods Appl. Sci., 42, ed. J. M. Font-Llagunes, Springer, Cham, 2016, 1–18
[32] Prikl. Mat. Mekh., 31:3 (1967), 433–446 (Russian)
[33] Borisov, A. V. and Mamaev, I. S., “Two Non-Holonomic Integrable Problems Tracing Back to Chaplygin”, Regul. Chaotic Dyn., 17:2 (2012), 191–198
[34] Ivanova, T. B. and Pivovarova, E. N., “Dynamics and Control of a Spherical Robot with an Axisymmetric Pendulum Actuator”, Nelin. Dinam., 9:3 (2013), 507–520 (Russian)
[35] Teor. Mat. Fiz., 211:2 (2022), 281–294 (Russian)
[36] Kilin, A. A., Pivovarova, E. N., and Ivanova, T. B., “Spherical Robot of Combined Type: Dynamics and Control”, Regul. Chaotic Dyn., 20:6 (2015), 716–728
[37] Ivanova, T. B., Kilin, A. A., and Pivovarova, E. N., “Controlled Motion of a Spherical Robot with Feedback: 1”, J. Dyn. Control Syst., 24:3 (2018), 497–510
[38] Izv. Ross. Akad. Nauk. Teor. Sist. Upr., 2013, no. 4, 150–163 (Ruussian)