On the Orbital Stability of Pendulum Oscillations
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 589-607.

Voir la notice de l'article provenant de la source Math-Net.Ru

The orbital stability of planar pendulum-like oscillations of a satellite about its center of mass is investigated. The satellite is supposed to be a dynamically symmetrical rigid body whose center of mass moves in a circular orbit. Using the recently developed approach [1], local variables are introduced and equations of perturbed motion are obtained in a Hamiltonian form. On the basis of the method of normal forms and KAM theory, a nonlinear analysis is performed and rigorous conclusions on orbital stability are obtained for almost all parameter values. In particular, the so-called case of degeneracy, when it is necessary to take into account terms of order six in the expansion of the Hamiltonian function, is studied.
Keywords: rigid body, orbital stability, Hamiltonian system, local coordinates, normal form.
Mots-clés : satellite, oscillations
@article{ND_2022_18_4_a8,
     author = {B. S. Bardin and E. A. Chekina and A. M. Chekin},
     title = {On the {Orbital} {Stability} of {Pendulum} {Oscillations}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {589--607},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a8/}
}
TY  - JOUR
AU  - B. S. Bardin
AU  - E. A. Chekina
AU  - A. M. Chekin
TI  - On the Orbital Stability of Pendulum Oscillations
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 589
EP  - 607
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_4_a8/
LA  - en
ID  - ND_2022_18_4_a8
ER  - 
%0 Journal Article
%A B. S. Bardin
%A E. A. Chekina
%A A. M. Chekin
%T On the Orbital Stability of Pendulum Oscillations
%J Russian journal of nonlinear dynamics
%D 2022
%P 589-607
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_4_a8/
%G en
%F ND_2022_18_4_a8
B. S. Bardin; E. A. Chekina; A. M. Chekin. On the Orbital Stability of Pendulum Oscillations. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 589-607. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a8/

[1] Bardin, B. S., “On a Method of Introducing Local Coordinates in the Problem of the Orbital Stability of Planar Periodic Motions of a Rigid Body”, Russian J. Nonlinear Dyn., 16:4 (2020), 581–594

[2] Markeev, A. P., Linear Hamiltonian Systems and Some Problems of Stability of the Satellite Center of Mass, R Dynamics, Institute of Computer Science, Izhevsk, 2009 (Russian)

[3] Kane, T. R. and Shippy, D. J., “Attitude Stability of a Spinning Unsymmetrical Satellite in a Circular Orbit”, J. Astrounaut. Sci., 10:4 (1963), 114–119

[4] Kane, T. R., “Attitude Stability of Earth-Pointing Satellites”, AIAA J., 3:4 (1965), 726–731

[5] Meirovitch, L. and Wallace, F., “Attitude Instability Regions of a Spinning Unsymmetrical Satellite in a Circular Orbit”, J. Astrounaut. Sci., 14:3 (1967), 123–133

[6] Kosmicheskie Issledovaniya, 38:3 (2000), 307–321 (Russian)

[7] Prikl. Mat. Mekh., 63:5 (1999), 746–756 (Russian)

[8] Kholostova, O. V., “Linear Analysis of Stability the Planar Oscillations of a Satellite Being a Plate in a Circular Orbit”, Nelin. Dinam., 1:2 (2005), 181–190 (Russian)

[9] Kosmicheskie Issledovaniya, 13:3 (1975), 322–336 (Russian)

[10] Markeev, A. P. and Bardin, B. S., “On the Stability of Planar Oscillations and Rotations of a Satellite in a Circular Orbit”, Celest. Mech. Dynam. Astronom., 85:1 (2003), 51–66

[11] Bardin, B. S., “On Orbital Stability of Planar Motions of Symmetric Satellites in Cases of First and Second Order Resonances”, Proc. of the 6th Conference on Celestial Mechanics (Señorio de Bértiz, 2003), Monogr. Real Acad. Ci. Exact. Fís.-Quím. Nat. Zaragoza, 25, eds. J. Palacian, P. Yanguas, Real Acad. Ci. Exact. Fís.-Quím. Nat., Zaragoza, 2004, 59–70

[12] Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, 12:4 (1977), 46–57 (Russian)

[13] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2006, no. 4, 63–85 (Russian)

[14] Bardin, B. S. and Checkin, A. M., “About Orbital Stability of Plane Rotations for a Plate Satellite Travelling in a Circular Orbit”, Vestn. MAI, 14:2 (2007), 23–36 (Russian)

[15] Kosmicheskie Issledovaniya, 46:3 (2008), 279–288 (Russian)

[16] Bardin, B. S. and Chekina, E. A., “On the Stability of Planar Oscillations of a Satellite-Plate in the Case of Essential Type Resonance”, Nelin. Dinam., 13:4 (2017), 465–476 (Russian)

[17] Bardin, B. S. and Chekina, E. A., “On the Orbital Stability of Pendulum-Like Oscillations of a Heavy Rigid Body with a Fixed Point in the Bobylev – Steklov Case”, Russian J. Nonlinear Dyn., 17:4 (2021), 453–464

[18] Malkin, I. G., Theory of Stability of Motion, U.S. Atomic Energy Commission, Washington, D.C., 1952, 456 pp.

[19] Gradshtein, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, 7th ed., Acad. Press, Amsterdam, 2007, 1200 pp.

[20] Siegel, C. and Moser, J., Lectures on Celestial Mechanics, Grundlehren Math. Wiss., 187, Springer, New York, 1971, xii+290 pp.

[21] Uspekhi Mat. Nauk, 18:6 (114) (1963), 91–192 (Russian)

[22] Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 39:6 (2004), 3–12 (Russian)

[23] Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 1996, no. 2, 37–54 (Russian)

[24] Prikl. Mat. Mekh., 78:5 (2014), 612–624 (Russian)

[25] Bardin, B. S., Chekina, E. A., and Chekin, A. M., “On the Stability of a Planar Resonant Rotation of a Satellite in an Elliptic Orbit”, Regul. Chaotic Dyn., 20:1 (2015), 63–73