On the Orbital Stability of Pendulum Oscillations
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 589-607
Voir la notice de l'article provenant de la source Math-Net.Ru
The orbital stability of planar pendulum-like oscillations of a satellite about its center of
mass is investigated. The satellite is supposed to be a dynamically symmetrical rigid body
whose center of mass moves in a circular orbit. Using the recently developed approach [1], local
variables are introduced and equations of perturbed motion are obtained in a Hamiltonian form.
On the basis of the method of normal forms and KAM theory, a nonlinear analysis is performed
and rigorous conclusions on orbital stability are obtained for almost all parameter values. In
particular, the so-called case of degeneracy, when it is necessary to take into account terms of
order six in the expansion of the Hamiltonian function, is studied.
Keywords:
rigid body, orbital stability, Hamiltonian system, local coordinates, normal form.
Mots-clés : satellite, oscillations
Mots-clés : satellite, oscillations
@article{ND_2022_18_4_a8,
author = {B. S. Bardin and E. A. Chekina and A. M. Chekin},
title = {On the {Orbital} {Stability} of {Pendulum} {Oscillations}},
journal = {Russian journal of nonlinear dynamics},
pages = {589--607},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a8/}
}
TY - JOUR AU - B. S. Bardin AU - E. A. Chekina AU - A. M. Chekin TI - On the Orbital Stability of Pendulum Oscillations JO - Russian journal of nonlinear dynamics PY - 2022 SP - 589 EP - 607 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2022_18_4_a8/ LA - en ID - ND_2022_18_4_a8 ER -
B. S. Bardin; E. A. Chekina; A. M. Chekin. On the Orbital Stability of Pendulum Oscillations. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 589-607. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a8/