On the Orbital Stability of Pendulum Oscillations
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 589-607

Voir la notice de l'article provenant de la source Math-Net.Ru

The orbital stability of planar pendulum-like oscillations of a satellite about its center of mass is investigated. The satellite is supposed to be a dynamically symmetrical rigid body whose center of mass moves in a circular orbit. Using the recently developed approach [1], local variables are introduced and equations of perturbed motion are obtained in a Hamiltonian form. On the basis of the method of normal forms and KAM theory, a nonlinear analysis is performed and rigorous conclusions on orbital stability are obtained for almost all parameter values. In particular, the so-called case of degeneracy, when it is necessary to take into account terms of order six in the expansion of the Hamiltonian function, is studied.
Keywords: rigid body, orbital stability, Hamiltonian system, local coordinates, normal form.
Mots-clés : satellite, oscillations
@article{ND_2022_18_4_a8,
     author = {B. S. Bardin and E. A. Chekina and A. M. Chekin},
     title = {On the {Orbital} {Stability} of {Pendulum} {Oscillations}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {589--607},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a8/}
}
TY  - JOUR
AU  - B. S. Bardin
AU  - E. A. Chekina
AU  - A. M. Chekin
TI  - On the Orbital Stability of Pendulum Oscillations
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 589
EP  - 607
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_4_a8/
LA  - en
ID  - ND_2022_18_4_a8
ER  - 
%0 Journal Article
%A B. S. Bardin
%A E. A. Chekina
%A A. M. Chekin
%T On the Orbital Stability of Pendulum Oscillations
%J Russian journal of nonlinear dynamics
%D 2022
%P 589-607
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_4_a8/
%G en
%F ND_2022_18_4_a8
B. S. Bardin; E. A. Chekina; A. M. Chekin. On the Orbital Stability of Pendulum Oscillations. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 589-607. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a8/