Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_4_a8, author = {B. S. Bardin and E. A. Chekina and A. M. Chekin}, title = {On the {Orbital} {Stability} of {Pendulum} {Oscillations}}, journal = {Russian journal of nonlinear dynamics}, pages = {589--607}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a8/} }
TY - JOUR AU - B. S. Bardin AU - E. A. Chekina AU - A. M. Chekin TI - On the Orbital Stability of Pendulum Oscillations JO - Russian journal of nonlinear dynamics PY - 2022 SP - 589 EP - 607 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2022_18_4_a8/ LA - en ID - ND_2022_18_4_a8 ER -
B. S. Bardin; E. A. Chekina; A. M. Chekin. On the Orbital Stability of Pendulum Oscillations. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 589-607. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a8/
[1] Bardin, B. S., “On a Method of Introducing Local Coordinates in the Problem of the Orbital Stability of Planar Periodic Motions of a Rigid Body”, Russian J. Nonlinear Dyn., 16:4 (2020), 581–594
[2] Markeev, A. P., Linear Hamiltonian Systems and Some Problems of Stability of the Satellite Center of Mass, R Dynamics, Institute of Computer Science, Izhevsk, 2009 (Russian)
[3] Kane, T. R. and Shippy, D. J., “Attitude Stability of a Spinning Unsymmetrical Satellite in a Circular Orbit”, J. Astrounaut. Sci., 10:4 (1963), 114–119
[4] Kane, T. R., “Attitude Stability of Earth-Pointing Satellites”, AIAA J., 3:4 (1965), 726–731
[5] Meirovitch, L. and Wallace, F., “Attitude Instability Regions of a Spinning Unsymmetrical Satellite in a Circular Orbit”, J. Astrounaut. Sci., 14:3 (1967), 123–133
[6] Kosmicheskie Issledovaniya, 38:3 (2000), 307–321 (Russian)
[7] Prikl. Mat. Mekh., 63:5 (1999), 746–756 (Russian)
[8] Kholostova, O. V., “Linear Analysis of Stability the Planar Oscillations of a Satellite Being a Plate in a Circular Orbit”, Nelin. Dinam., 1:2 (2005), 181–190 (Russian)
[9] Kosmicheskie Issledovaniya, 13:3 (1975), 322–336 (Russian)
[10] Markeev, A. P. and Bardin, B. S., “On the Stability of Planar Oscillations and Rotations of a Satellite in a Circular Orbit”, Celest. Mech. Dynam. Astronom., 85:1 (2003), 51–66
[11] Bardin, B. S., “On Orbital Stability of Planar Motions of Symmetric Satellites in Cases of First and Second Order Resonances”, Proc. of the 6th Conference on Celestial Mechanics (Señorio de Bértiz, 2003), Monogr. Real Acad. Ci. Exact. Fís.-Quím. Nat. Zaragoza, 25, eds. J. Palacian, P. Yanguas, Real Acad. Ci. Exact. Fís.-Quím. Nat., Zaragoza, 2004, 59–70
[12] Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, 12:4 (1977), 46–57 (Russian)
[13] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2006, no. 4, 63–85 (Russian)
[14] Bardin, B. S. and Checkin, A. M., “About Orbital Stability of Plane Rotations for a Plate Satellite Travelling in a Circular Orbit”, Vestn. MAI, 14:2 (2007), 23–36 (Russian)
[15] Kosmicheskie Issledovaniya, 46:3 (2008), 279–288 (Russian)
[16] Bardin, B. S. and Chekina, E. A., “On the Stability of Planar Oscillations of a Satellite-Plate in the Case of Essential Type Resonance”, Nelin. Dinam., 13:4 (2017), 465–476 (Russian)
[17] Bardin, B. S. and Chekina, E. A., “On the Orbital Stability of Pendulum-Like Oscillations of a Heavy Rigid Body with a Fixed Point in the Bobylev – Steklov Case”, Russian J. Nonlinear Dyn., 17:4 (2021), 453–464
[18] Malkin, I. G., Theory of Stability of Motion, U.S. Atomic Energy Commission, Washington, D.C., 1952, 456 pp.
[19] Gradshtein, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, 7th ed., Acad. Press, Amsterdam, 2007, 1200 pp.
[20] Siegel, C. and Moser, J., Lectures on Celestial Mechanics, Grundlehren Math. Wiss., 187, Springer, New York, 1971, xii+290 pp.
[21] Uspekhi Mat. Nauk, 18:6 (114) (1963), 91–192 (Russian)
[22] Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 39:6 (2004), 3–12 (Russian)
[23] Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 1996, no. 2, 37–54 (Russian)
[24] Prikl. Mat. Mekh., 78:5 (2014), 612–624 (Russian)
[25] Bardin, B. S., Chekina, E. A., and Chekin, A. M., “On the Stability of a Planar Resonant Rotation of a Satellite in an Elliptic Orbit”, Regul. Chaotic Dyn., 20:1 (2015), 63–73