Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_4_a7, author = {P. S. Krasilnikov and A. R. Ismagilov}, title = {On the {Dumb-Bell} {Equilibria} in the {Generalized}}, journal = {Russian journal of nonlinear dynamics}, pages = {577--588}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a7/} }
P. S. Krasilnikov; A. R. Ismagilov. On the Dumb-Bell Equilibria in the Generalized. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 577-588. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a7/
[1] Corbera, M. and Llibre, J., “Periodic Orbits of the Sitnikov Problem via a Poincaré Map”, Celestial Mech. Dynam. Astronom., 77:4 (2000), 273–303
[2] Kovács, T. and Érdi, B., “The Structure of the Extended Phase Space of the Sitnikov Problem”, Astron. Nachr., 328:8 (2007), 801–804
[3] Alfaro, J. M. and Chiralt, C., “Invariant Rotational Curves in Sitnikov's Problem”, Celest. Mech. Dyn. Astron., 55 (1993), 351–367
[4] Kalas, V. O. and Krasil'nikov, P. S., “On the Investigation of Stability of Equilibrium in Sitnikov Problem in Nonlinear Formulation”, Russian J. Nonlinear Dyn., 11:1 (2015), 117–126
[5] Belbruno, E., Llibre, J., and Ollé, M., “On the Families of Periodic Orbits which Bifurcate from Circular Sitnikov Motions”, Celest. Mech. Dynam. Astron., 60:1 (1994), 99–129
[6] Sidorenko, V. V., “On the Circular Sitnikov Problem: The Alternation of Stability and Instability in the Family of Vertical Motions”, Celest. Mech. Dynam. Astron., 109:4 (2011), 367–384
[7] Markeev, A. P., “Subharmonic Ostillations in the Near-Circular Elliptic Sitnikov Problem”, Mech. Solids, 55:8 (2020), 1162–1171
[8] Krasilnikov, P. S., “On the Manifold “Gravitational Propeller” in the Generalized Circular Sitnikov Problem”, Mech. Solids, 56:8 (2021), 1578–1586
[9] Barkin, Yu. V. and Demin, V. G., Translatory-Rotatory Motion of Celestial Bodies, Itogi Nauki Tekh. Ser. Astronom., 20, VINITI, Moscow, 1982 (Russian)
[10] Astron. Zh., 67 (1990), 602–611 (Russian)
[11] Rumyantsev, V. V., “On the Stability of Orientation of a Dynamically Symmetric Satellite at Libration Points”, Mekh. Tverd. Tela, 2 (1974), 3–8 (Russian)
[12] Dzhanikashvili, G. V., “Relative Equilibria of a Satellite Gyrostat in the Restricted Three-Body Problem”, Akad. Nauk Gruz. SSR, Soobshcheniia, 84:1 (1976), 53–56 (Russian)
[13] Robinson, W. J., “The Restricted Problem of Three Bodies with Rigid Dumb-Bell Satellite”, Celest. Mech. Dynam. Astron., 8:2 (1973), 323–330
[14] Robinson, W. J., “Attitude Stability of a Rigid Body Placed at an Equilibrium Point in the Restricted Problem of Three Bodies”, Celest. Mech. Dynam. Astron., 10:1 (1974), 17–33
[15] Guzzetti, D. and Howell, K. C., “Natural Periodic Orbit-Attitude Behaviors for Rigid Bodies in Three-Body Periodic Orbits”, Acta Astronaut., 130 (2017), 97–113
[16] Guzzetti, D. and Howell K. C., “Coupled Orbit-Attitude Dynamics in the Three-Body Problem: A Family of Orbit-Attitude Periodic Solutions”, AIAA/AAS Astrodynamics Specialist Conf. (San Diego, Calif., Aug 2014)), 2014-4100, 19 pp.
[17] Pascal, M., “Problème restreint des trois corps appliqué à un bâtonnet”, C. R. Acad. Sci. Paris Sér. A, 272 (1971), 286–288
[18] Astron. Zh., 36:1 (1959), 153–163 (Russian)
[19] Kosmicheskie Issledovaniya, 28:5 (1990), 664–675 (Russian)
[20] Karapetyan, A. V., Stability and Bifurcation of Motions, MGU, Moscow, 2020, 188 pp. (Russian)
[21] Lyapunov, A. M., The General Problem of the Stability of Motion, Fracis Taylor, London, 1992, x+270 pp.
[22] Malkin, I. G., Theory of Stability of Motion, Univ. of Michigan Library, Ann Arbor, Mich., 1958, 456 pp.