On the Dumb-Bell Equilibria in the Generalized
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 577-588.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper discusses and analyzes the dumb–bell equilibria in a generalized Sitnikov problem. This has been done by assuming that the dumb–bell is oriented along the normal to the plane of motion of two primaries. Assuming the orbits of primaries to be circles, we apply bifurcation theory to investigate the set of equilibria for both symmetrical and asymmetrical dumb–bells. We also investigate the linear stability of the trivial equilibrium of a symmetrical dumb–bell in the elliptic Sitnikov problem. In the case of the dumb–bell length $l \geqslant 0.983819$, an instability of the trivial equilibria for eccentricity $e \in (0, 1)$ is proved.
Keywords: Sitnikov problem, dumb–bell, equilibrium, linear stability.
@article{ND_2022_18_4_a7,
     author = {P. S. Krasilnikov and A. R. Ismagilov},
     title = {On the {Dumb-Bell} {Equilibria} in the {Generalized}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {577--588},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a7/}
}
TY  - JOUR
AU  - P. S. Krasilnikov
AU  - A. R. Ismagilov
TI  - On the Dumb-Bell Equilibria in the Generalized
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 577
EP  - 588
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_4_a7/
LA  - en
ID  - ND_2022_18_4_a7
ER  - 
%0 Journal Article
%A P. S. Krasilnikov
%A A. R. Ismagilov
%T On the Dumb-Bell Equilibria in the Generalized
%J Russian journal of nonlinear dynamics
%D 2022
%P 577-588
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_4_a7/
%G en
%F ND_2022_18_4_a7
P. S. Krasilnikov; A. R. Ismagilov. On the Dumb-Bell Equilibria in the Generalized. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 577-588. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a7/

[1] Corbera, M. and Llibre, J., “Periodic Orbits of the Sitnikov Problem via a Poincaré Map”, Celestial Mech. Dynam. Astronom., 77:4 (2000), 273–303

[2] Kovács, T. and Érdi, B., “The Structure of the Extended Phase Space of the Sitnikov Problem”, Astron. Nachr., 328:8 (2007), 801–804

[3] Alfaro, J. M. and Chiralt, C., “Invariant Rotational Curves in Sitnikov's Problem”, Celest. Mech. Dyn. Astron., 55 (1993), 351–367

[4] Kalas, V. O. and Krasil'nikov, P. S., “On the Investigation of Stability of Equilibrium in Sitnikov Problem in Nonlinear Formulation”, Russian J. Nonlinear Dyn., 11:1 (2015), 117–126

[5] Belbruno, E., Llibre, J., and Ollé, M., “On the Families of Periodic Orbits which Bifurcate from Circular Sitnikov Motions”, Celest. Mech. Dynam. Astron., 60:1 (1994), 99–129

[6] Sidorenko, V. V., “On the Circular Sitnikov Problem: The Alternation of Stability and Instability in the Family of Vertical Motions”, Celest. Mech. Dynam. Astron., 109:4 (2011), 367–384

[7] Markeev, A. P., “Subharmonic Ostillations in the Near-Circular Elliptic Sitnikov Problem”, Mech. Solids, 55:8 (2020), 1162–1171

[8] Krasilnikov, P. S., “On the Manifold “Gravitational Propeller” in the Generalized Circular Sitnikov Problem”, Mech. Solids, 56:8 (2021), 1578–1586

[9] Barkin, Yu. V. and Demin, V. G., Translatory-Rotatory Motion of Celestial Bodies, Itogi Nauki Tekh. Ser. Astronom., 20, VINITI, Moscow, 1982 (Russian)

[10] Astron. Zh., 67 (1990), 602–611 (Russian)

[11] Rumyantsev, V. V., “On the Stability of Orientation of a Dynamically Symmetric Satellite at Libration Points”, Mekh. Tverd. Tela, 2 (1974), 3–8 (Russian)

[12] Dzhanikashvili, G. V., “Relative Equilibria of a Satellite Gyrostat in the Restricted Three-Body Problem”, Akad. Nauk Gruz. SSR, Soobshcheniia, 84:1 (1976), 53–56 (Russian)

[13] Robinson, W. J., “The Restricted Problem of Three Bodies with Rigid Dumb-Bell Satellite”, Celest. Mech. Dynam. Astron., 8:2 (1973), 323–330

[14] Robinson, W. J., “Attitude Stability of a Rigid Body Placed at an Equilibrium Point in the Restricted Problem of Three Bodies”, Celest. Mech. Dynam. Astron., 10:1 (1974), 17–33

[15] Guzzetti, D. and Howell, K. C., “Natural Periodic Orbit-Attitude Behaviors for Rigid Bodies in Three-Body Periodic Orbits”, Acta Astronaut., 130 (2017), 97–113

[16] Guzzetti, D. and Howell K. C., “Coupled Orbit-Attitude Dynamics in the Three-Body Problem: A Family of Orbit-Attitude Periodic Solutions”, AIAA/AAS Astrodynamics Specialist Conf. (San Diego, Calif., Aug 2014)), 2014-4100, 19 pp.

[17] Pascal, M., “Problème restreint des trois corps appliqué à un bâtonnet”, C. R. Acad. Sci. Paris Sér. A, 272 (1971), 286–288

[18] Astron. Zh., 36:1 (1959), 153–163 (Russian)

[19] Kosmicheskie Issledovaniya, 28:5 (1990), 664–675 (Russian)

[20] Karapetyan, A. V., Stability and Bifurcation of Motions, MGU, Moscow, 2020, 188 pp. (Russian)

[21] Lyapunov, A. M., The General Problem of the Stability of Motion, Fracis Taylor, London, 1992, x+270 pp.

[22] Malkin, I. G., Theory of Stability of Motion, Univ. of Michigan Library, Ann Arbor, Mich., 1958, 456 pp.