Numerical Orbital Stability Analysis of Nonresonant
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 563-576.

Voir la notice de l'article provenant de la source Math-Net.Ru

We address the planar restricted four-body problem with a small body of negligible mass moving in the Newtonian gravitational field of three primary bodies with nonnegligible masses. We assume that two of the primaries have equal masses and that all primary bodies move in circular orbits forming a Lagrangian equilateral triangular configuration. This configuration admits relative equilibria for the small body analogous to the libration points in the three-body problem. We consider the equilibrium points located on the perpendicular bisector of the Lagrangian triangle in which case the bodies constitute the so-called central configurations. Using the method of normal forms, we analytically obtain families of periodic motions emanating from the stable relative equilibria in a nonresonant case and continue them numerically to the borders of their existence domains. Using a numerical method, we investigate the orbital stability of the aforementioned periodic motions and represent the conclusions as stability diagrams in the problem’s parameter space.
Keywords: Hamiltonian mechanics, four-body problem, periodic motions, orbital stability.
@article{ND_2022_18_4_a6,
     author = {E. A. Sukhov and E. V. Volkov},
     title = {Numerical {Orbital} {Stability} {Analysis} of {Nonresonant}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {563--576},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a6/}
}
TY  - JOUR
AU  - E. A. Sukhov
AU  - E. V. Volkov
TI  - Numerical Orbital Stability Analysis of Nonresonant
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 563
EP  - 576
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_4_a6/
LA  - en
ID  - ND_2022_18_4_a6
ER  - 
%0 Journal Article
%A E. A. Sukhov
%A E. V. Volkov
%T Numerical Orbital Stability Analysis of Nonresonant
%J Russian journal of nonlinear dynamics
%D 2022
%P 563-576
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_4_a6/
%G en
%F ND_2022_18_4_a6
E. A. Sukhov; E. V. Volkov. Numerical Orbital Stability Analysis of Nonresonant. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 563-576. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a6/

[1] Burgos-García, J. and Delangado, J., “Periodic Orbits in the Restricted Four-Body Problem with Two Equal Masses”, Astrophys. Space Sci., 345:2 (2012), 247–263

[2] Baltagiannis, A. and Papadakis, K. E., “Families of Periodic Orbits in the Restricted Four-body Problem”, Astrophys. Space Sci., 336:2 (2011), 357–367

[3] Papadakis, K. E., “Asymptotic Orbits in the Restricted Four-Body Problem”, Planet. Space Sci., 55:10 (2007), 1368–1379

[4] Oshima, K., “Multiple Families of Synodic Resonant Periodic Orbits in the Bicircular Restricted Four-Body Problem”, Adv. Space Res., 70:5 (2022), 1325–1335

[5] Álvares-Ramírez, M. and Vidal, C., “Dynamical Aspects of an Equilateral Restricted Four-Body Problem”, Math. Probl. Eng., 2009 (2009), 181360, 23 pp.

[6] Michalodimitrakis, M., “The Circular Restricted Four-Body Problem”, Astrophys. Space Sci., 75:2 (1981), 289–305

[7] Howell, K. C. and Spencer, D. B., “Periodic Orbits in the Restricted Four-Body Problem”, Acta Astronaut., 13:8 (1986), 473–479

[8] Bardin, B. S. and Volkov, E. V., “Stability Study of a Relative Equilibrium in the Planar Circular Restricted Four-Body Problem”, IOP Conf. Ser.: Mater. Sci. Eng., 927 (2020), 012012, 7 pp.

[9] Bardin, B. S. and Volkov, E. V., “On Bifurcations and Stability of Central Configurations in the Planar Circular Restricted Four-Body Problem”, J. Phys.: Conf. Ser., 1959 (2021), 012006, 8 pp.

[10] Bardin, B. S. and Volkov, E. V., “Analysis of Linear Stability and Bifurcations of Central Configurations in the Planar Restricted Circular Four-Body Problem”, IOP Conf. Ser.: Mater. Sci. Eng., 1191 (2021), 012002, 8 pp.

[11] Routh, E. J., “On Laplace's Three Particles with a Supplement on the Stability or Their Motion”, Proc. London Math. Soc., 6 (1875), 86–97

[12] Lyapunov, A. M., The General Problem of the Stability of Motion, Fracis Taylor, London, 1992, x+270 pp.

[13] Markeev, A. P., Linear Hamiltonian Systems and Some Problems on Stability of Motion of a Satellite about Its Center of Mass, R Dynamics, Institute of Computer Science, Izhevsk, 2009, 396 pp. (Russian)

[14] Deprit, A. and Henrard, J., “Natural Families of Periodic Orbits”, Astron. J., 72:2 (1967), 158–172

[15] Karimov, S. R. and Sokolskiy, A. G., Method of Numerical Continuation of Natural Families of Periodic Motions of Hamiltonian Systems, Preprint No. 9, Institute of Theoretical Astronomy of the Academy of Sciences of the USSR, Moscow, 1990, 32 pp. (Russian)

[16] Probl. Matem. Anal., 104 (2020), 139–148 (Russian)

[17] Sukhov, E. A., “On Numerical Bifurcation Analysis of Periodic Motions of Autonomous Hamiltonian Systems with Two Degrees of Freedom”, J. Phys.: Conf. Ser., 1959 (2021), 012048, 8 pp.

[18] Sukhov, E. A. and Bardin, B. S., “Numerical Analysis of Periodic Motions of a Dynamically Symmetric Satellite Originated from Its Hyperboloidal Precession”, Inzh. Zh.: Nauka Innov., 5 (53) (2016), 1–10 (Russian)

[19] Wintner, A., “Grundlagen einer Genealogie der periodischen Bahnen in restringierten Dreikörperproblem”, Math. Z., 34:1 (1932), 321–402

[20] Schmidt, D. S., “Periodic Solutions near a Resonant Equilibrium of a Hamiltonian System”, Celestial Mech., 9:1 (1974), 81–103

[21] Prikl. Mat. Mekh., 63:5 (1999), 757–769 (Russian)

[22] Bardin, B. S., “On Nonlinear Motions of Hamiltonian System in Case of Fourth Order Resonance”, Regul. Chaotic Dyn., 12:1 (2007), 86–100