Numerical Orbital Stability Analysis of Nonresonant
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 563-576

Voir la notice de l'article provenant de la source Math-Net.Ru

We address the planar restricted four-body problem with a small body of negligible mass moving in the Newtonian gravitational field of three primary bodies with nonnegligible masses. We assume that two of the primaries have equal masses and that all primary bodies move in circular orbits forming a Lagrangian equilateral triangular configuration. This configuration admits relative equilibria for the small body analogous to the libration points in the three-body problem. We consider the equilibrium points located on the perpendicular bisector of the Lagrangian triangle in which case the bodies constitute the so-called central configurations. Using the method of normal forms, we analytically obtain families of periodic motions emanating from the stable relative equilibria in a nonresonant case and continue them numerically to the borders of their existence domains. Using a numerical method, we investigate the orbital stability of the aforementioned periodic motions and represent the conclusions as stability diagrams in the problem’s parameter space.
Keywords: Hamiltonian mechanics, four-body problem, periodic motions, orbital stability.
@article{ND_2022_18_4_a6,
     author = {E. A. Sukhov and E. V. Volkov},
     title = {Numerical {Orbital} {Stability} {Analysis} of {Nonresonant}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {563--576},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a6/}
}
TY  - JOUR
AU  - E. A. Sukhov
AU  - E. V. Volkov
TI  - Numerical Orbital Stability Analysis of Nonresonant
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 563
EP  - 576
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_4_a6/
LA  - en
ID  - ND_2022_18_4_a6
ER  - 
%0 Journal Article
%A E. A. Sukhov
%A E. V. Volkov
%T Numerical Orbital Stability Analysis of Nonresonant
%J Russian journal of nonlinear dynamics
%D 2022
%P 563-576
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_4_a6/
%G en
%F ND_2022_18_4_a6
E. A. Sukhov; E. V. Volkov. Numerical Orbital Stability Analysis of Nonresonant. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 563-576. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a6/