On Stability of the Collinear Libration Point $L_1$
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 543-562.

Voir la notice de l'article provenant de la source Math-Net.Ru

The stability of the collinear libration point $L_1$ in the photogravitational three-body problem is investigated. This problem is concerned with the motion of a body of infinitely small mass which experiences gravitational forces and repulsive forces of radiation pressure coming from two massive bodies. It is assumed that the massive bodies move in circular orbits and that the body of small mass is located in the plane of their motion. Using methods of normal forms and KAM theory, a rigorous analysis of the Lyapunov stability of the collinear libration point lying on the segment connecting the massive bodies is performed. Conclusions on the stability are drawn both for the nonresonant case and for the case of resonances through order four.
Keywords: collinear libration point, photogravitational three-body problem, normal forms, KAM theory, Lyapunov stability, resonances.
@article{ND_2022_18_4_a5,
     author = {B. S. Bardin and A. N. Avdyushkin},
     title = {On {Stability} of the {Collinear} {Libration} {Point} $L_1$},
     journal = {Russian journal of nonlinear dynamics},
     pages = {543--562},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a5/}
}
TY  - JOUR
AU  - B. S. Bardin
AU  - A. N. Avdyushkin
TI  - On Stability of the Collinear Libration Point $L_1$
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 543
EP  - 562
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_4_a5/
LA  - en
ID  - ND_2022_18_4_a5
ER  - 
%0 Journal Article
%A B. S. Bardin
%A A. N. Avdyushkin
%T On Stability of the Collinear Libration Point $L_1$
%J Russian journal of nonlinear dynamics
%D 2022
%P 543-562
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_4_a5/
%G en
%F ND_2022_18_4_a5
B. S. Bardin; A. N. Avdyushkin. On Stability of the Collinear Libration Point $L_1$. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 543-562. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a5/

[1] Radzievsky, V. V., “The Restricted Problem of Three-Body Taking account of Light Pressure”, Astron. Zh., 27:5 (1950), 250–256 (Russian)

[2] Kunitsyn, A. L. and Tureshbaev, A. T., “The Collinear Libration Points in the Photogravitational Three-Body Problem”, Pis'ma v Astron. Zh., 9:7 (1983), 432–435 (Russian)

[3] Astron. Zh., 61:3 (1984), 564–570 (Russian)

[4] Simmons, J. F. L., McDonald, A. J. C., and Brown, J. C., “The Restricted $3$-Body Problem with Radiation Pressure”, Celestial Mech., 35:2 (1985), 145–187

[5] Duboshin, G. N., Celestial Mechanics: Analytical and Qualitative Methods, 2nd ed., rev. and enl., Nauka, Moscow, 1978, 456 pp. (Russian)

[6] Kunitsyn, A. L. and Tureshbaev, A. T., “On the Collinear Libration Points in the Photo-Gravitational Three-Body Problem”, Celestial Mech., 35:2 (1985), 105–112

[7] Astron. Zh., 63:6 (1986), 1222–1229 (Russian)

[8] Astron. Zh., 86:6 (2009), 598–606 (Russian)

[9] Prikl. Mat. Mekh., 74:2 (2010), 221–229 (Russian)

[10] Avtomat. i Telemekh., 2011, no. 9, 121–126 (Russian)

[11] Prikl. Mat. Mekh., 76:4 (2012), 610–615 (Russian)

[12] Bardin, B. S. and Avdyushkin, A. N., “Nonlinear Stability Analysis of a Collinear Libration Point in the Planar Circular Restricted Photogravitational Three-Body Problem”, J. Phys. Conf. Ser., 1925:1 (2021), 012018, 9 pp.

[13] Bardin, B. S. and Avdyushkin, A. N., “On Stability of a Collinear Libration Point in the Planar Circular Restricted Photogravitational Three-Body Problem in the Cases of First and Second Order Resonances”, J. Phys. Conf. Ser., 1959:1 (2021), 012004, 7 pp.

[14] Bardin, B. S. and Avdyushkin, A. N., “Stability of the Collinear Point $L_1^{}$ in the Planar Restricted Photogravitational Three-Body Problem in the Case of Equal Masses of Primaries”, IOP Conf. Ser.: Mater. Sci. Eng., 927:1 (2020), 012015, 6 pp.

[15] Malkin, I. G., Theory of Stability of Motion, Univ. of Michigan Library, Ann Arbor, Mich., 1958, 472 pp.

[16] Dokl. Akad. Nauk SSSR, 137:2 (1961), 255–257 (Russian)

[17] Uspekhi Mat. Nauk, 18:6 (114) (1963), 91–192 (Russian)

[18] Siegel, C. and Moser, J., Lectures on Celestial Mechanics, Grundlehren Math. Wiss., 187, Springer, New York, 1971, xii+290 pp.

[19] Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Nauka, Moscow, 1978, 312 pp. (Russian)

[20] Markeev, A. P., Linear Hamiltonian Systems and Some Problems of Stability of the Satellite Center of Mass, R Dynamics, Institute of Computer Science, Izhevsk, 2009, 396 pp. (Russian)

[21] Birkhoff, G. D., Dynamical Systems, AMS, Providence, R.I., 1966, 305 pp.

[22] Giacaglia, G. E. O., Perturbation Methods in Non-Linear Systems, Appl. Math. Sci., 8, Springer, New York, 1972, 369 pp.

[23] Prikl. Mat. Mekh., 41:1 (1977), 24–33 (Russian)

[24] Prikl. Mat. Mekh., 38:5 (1974), 791–799 (Russian)

[25] Prikl. Mat. Mekh., 39:2 (1975), 366–369 (Russian)

[26] Lerman, L. M. and Markova, A. P., “On Stability at the Hamiltonian Hopf Bifurcation”, Regul. Chaotic Dyn., 14:1 (2009), 148–162 (Russian)