Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_4_a5, author = {B. S. Bardin and A. N. Avdyushkin}, title = {On {Stability} of the {Collinear} {Libration} {Point} $L_1$}, journal = {Russian journal of nonlinear dynamics}, pages = {543--562}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a5/} }
B. S. Bardin; A. N. Avdyushkin. On Stability of the Collinear Libration Point $L_1$. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 543-562. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a5/
[1] Radzievsky, V. V., “The Restricted Problem of Three-Body Taking account of Light Pressure”, Astron. Zh., 27:5 (1950), 250–256 (Russian)
[2] Kunitsyn, A. L. and Tureshbaev, A. T., “The Collinear Libration Points in the Photogravitational Three-Body Problem”, Pis'ma v Astron. Zh., 9:7 (1983), 432–435 (Russian)
[3] Astron. Zh., 61:3 (1984), 564–570 (Russian)
[4] Simmons, J. F. L., McDonald, A. J. C., and Brown, J. C., “The Restricted $3$-Body Problem with Radiation Pressure”, Celestial Mech., 35:2 (1985), 145–187
[5] Duboshin, G. N., Celestial Mechanics: Analytical and Qualitative Methods, 2nd ed., rev. and enl., Nauka, Moscow, 1978, 456 pp. (Russian)
[6] Kunitsyn, A. L. and Tureshbaev, A. T., “On the Collinear Libration Points in the Photo-Gravitational Three-Body Problem”, Celestial Mech., 35:2 (1985), 105–112
[7] Astron. Zh., 63:6 (1986), 1222–1229 (Russian)
[8] Astron. Zh., 86:6 (2009), 598–606 (Russian)
[9] Prikl. Mat. Mekh., 74:2 (2010), 221–229 (Russian)
[10] Avtomat. i Telemekh., 2011, no. 9, 121–126 (Russian)
[11] Prikl. Mat. Mekh., 76:4 (2012), 610–615 (Russian)
[12] Bardin, B. S. and Avdyushkin, A. N., “Nonlinear Stability Analysis of a Collinear Libration Point in the Planar Circular Restricted Photogravitational Three-Body Problem”, J. Phys. Conf. Ser., 1925:1 (2021), 012018, 9 pp.
[13] Bardin, B. S. and Avdyushkin, A. N., “On Stability of a Collinear Libration Point in the Planar Circular Restricted Photogravitational Three-Body Problem in the Cases of First and Second Order Resonances”, J. Phys. Conf. Ser., 1959:1 (2021), 012004, 7 pp.
[14] Bardin, B. S. and Avdyushkin, A. N., “Stability of the Collinear Point $L_1^{}$ in the Planar Restricted Photogravitational Three-Body Problem in the Case of Equal Masses of Primaries”, IOP Conf. Ser.: Mater. Sci. Eng., 927:1 (2020), 012015, 6 pp.
[15] Malkin, I. G., Theory of Stability of Motion, Univ. of Michigan Library, Ann Arbor, Mich., 1958, 472 pp.
[16] Dokl. Akad. Nauk SSSR, 137:2 (1961), 255–257 (Russian)
[17] Uspekhi Mat. Nauk, 18:6 (114) (1963), 91–192 (Russian)
[18] Siegel, C. and Moser, J., Lectures on Celestial Mechanics, Grundlehren Math. Wiss., 187, Springer, New York, 1971, xii+290 pp.
[19] Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Nauka, Moscow, 1978, 312 pp. (Russian)
[20] Markeev, A. P., Linear Hamiltonian Systems and Some Problems of Stability of the Satellite Center of Mass, R Dynamics, Institute of Computer Science, Izhevsk, 2009, 396 pp. (Russian)
[21] Birkhoff, G. D., Dynamical Systems, AMS, Providence, R.I., 1966, 305 pp.
[22] Giacaglia, G. E. O., Perturbation Methods in Non-Linear Systems, Appl. Math. Sci., 8, Springer, New York, 1972, 369 pp.
[23] Prikl. Mat. Mekh., 41:1 (1977), 24–33 (Russian)
[24] Prikl. Mat. Mekh., 38:5 (1974), 791–799 (Russian)
[25] Prikl. Mat. Mekh., 39:2 (1975), 366–369 (Russian)
[26] Lerman, L. M. and Markova, A. P., “On Stability at the Hamiltonian Hopf Bifurcation”, Regul. Chaotic Dyn., 14:1 (2009), 148–162 (Russian)