Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_4_a4, author = {O. M. Podvigina}, title = {Rotation of a {Planet} in a {Three-Body} {System:}}, journal = {Russian journal of nonlinear dynamics}, pages = {527--541}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a4/} }
O. M. Podvigina. Rotation of a Planet in a Three-Body System:. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 527-541. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a4/
[1] Andoyer, M. H., Cours de Mécaniquee Céleste, v. 1, Gauthier-Villars, Paris, 1923, vi,439 pp.
[2] Armstrong, J. C., Barnes, R., Domagal-Goldman, S., Breiner, J., Quinn, T. R., and Meadows, V. C., “Effects of Extreme Obliquity Variations on the Habitability of Exoplanets”, Astrobiology, 14:4 (2014), 277–291
[3] Arnol'd, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, xiv+518 pp.
[4] Atobe, K. and Ida, S., “Obliquity Evolution of Extrasolar Terrestrial Planets”, Icarus, 188:1 (2007), 1–17
[5] Beletskii, V. V., Motion of an Artificial Satellite about Its Center of Mass, Israel Program for Scientific Translations, Jerusalem, 1966, x, 261 pp.
[6] Beletskii, V. V., “Resonance Rotation of Celestial Bodies and Cassini's Laws”, Celestial Mech., 6 (1972), 356–378
[7] Beletskii, V. V., Satellite's Motion about Center of Mass in a Gravitational Field, MGU, Moscow, 1975, 308 pp. (Russian)
[8] Boué, G. and Laskar, J., “A Collisionless Scenario for Uranus Tilting”, Astrophys. J., 712:1 (2010), L44–L47
[9] Boué, G., Laskar, J., and Kuchynka, P., “Speed Limit on Neptune Migration Imposed by Saturn Tilting”, Astrophys. J., 702:1 (2009), L19–L22
[10] Brunini, A., “Correction: Origin of the Obliquities of the Giant Planets in Mutual Interaction in the Early Solar System”, Nature, 443:7114 (2006), 1013
[11] Brunini, A., “Origin of the Obliquities of the Giant Planets in Mutual Interaction in the Early Solar System”, Nature, 440:7088 (2006), 1163–1165
[12] Correia, A. C. M. and Laskar, J., “Long-Term Evolution of the Spin of Venus: 2. Numerical Simulations”, Icarus, 163:1 (2003), 24–45
[13] Correia, A. C. M., Laskar, J., and Néron de Surgy, O., “Long-Term Evolution of the Spin of Venus: 1. Theory”, Icarus, 163:1 (2003), 1–23
[14] Dehant, V. and Mathews, P. M., Precession, Nutation and Wobble of the Earth, Cambridge Univ. Press, Cambridge, 2015, 554 pp.
[15] Ferreira, D., Marshall, J., O'Gorman, P. A., and Seager, S., “Climate at High-Obliquity”, Icarus, 243 (2014), 236–248
[16] Heller, R., Leconte, J., and Barnes, R., “Tidal Obliquity Evolution of Potentially Habitable Planets”, Astron. Astrophys., 528 (2011), A27, 16 pp.
[17] Henrard, J. and Lemaitre, A., “A Second Fundamental Model for Resonance”, Celestial Mech., 30 (1983), 197–218
[18] Kilic, C., Raible, C. C., and Stocker, T. F., “Multiple Climate States of Habitable Exoplanets: The Role of Obliquity and Irradiance”, Astrophys. J., 844:2 (2017), 147, 13 pp.
[19] Kinoshita, H., “Theory of the Rotation of the Rigid Earth”, Celestial Mech., 15:3 (1977), 277–326
[20] Kozai, Y., “Secular Perturbations of Asteroids with High Inclination and Eccentricity”, Astron. J., 67 (1962), 591–598
[21] Krasilnikov, P. S., Applied Methods for the Study of Nonlinear Oscillations, R Dynamics, Institute of Computer Science, Izhevsk, 2015, 528 pp. (Russian)
[22] Kosmicheskie Issledovaniya, 56:4 (2018), 326–336 (Russian)
[23] Krasilnikov, P. S. and Podvigina, O. M., “On Evolution of the Planet's Obliquity in a Non-Resonant Planetary System”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:4 (2018), 549–564 (Russian)
[24] Kosmicheskie Issledovaniya, 31:6 (1993), 11–21 (Russian)
[25] Laskar, J., Correia, A. M. C., Gastineau, M., Joutel, F., Levrard, B., and Robutel, P., “Long Term Evolution and Chaotic Diffusion of the Insolation Quantities of Mars”, Icarus, 170:2 (2004), 343–364
[26] Laskar, J., Joutel, F., and Robutel, P., “Stabilization of the Earth's Obliquity by the Moon”, Nature, 361:6413 (1993), 615–617
[27] Laskar, J., Joutel, F., and Boudin, F., “Orbital, Precessional and Insolation Quantities for the Earth from $-20$ Myr to $+10$ Myr”, Astron. Astroph., 270:1–2 (1993), 522–533
[28] Laskar, J. and Robutel, P., “The Chaotic Obliquity of the Planets”, Nature, 361:6413 (1993), 608–612
[29] Lidov, M. L., “The Evolution of Orbits of Artificial Satellites of Planets under the Action of Gravitational Perturbations of External Bodies”, Planet. Space Sci., 9:10 (1962), 719–759
[30] Lidov, M. L. and Ziglin, S. L., “The Analysis of Restricted Circular Twice-Averaged Three Body Problem in the Case of Close Orbits”, Celestial Mech., 9:2 (1974), 151–173
[31] Lissauer, J. J., Barnes, J. W., and Chambers, J. E., “Obliquity Variations of a Moonless Earth”, Icarus, 217:1 (2011), 77–87
[32] Markeev, A. P. and Krasilnikov, P. S., “On Motion of a Satellite Relative to the Center of Mass in the Elliptic Restricted Three Body Problem”, Kosmicheskie Issledovaniya, 19:2 (1981), 178–190 (Russian)
[33] Milankovitch, M., Canon of Insolation and the Ice-Age Problem, Israel Program for Scientific Translations, Jerusalem, 1969, xxiii, 484 pp.
[34] Murray, C. D. and Dermott, S. F., Solar System Dynamics, Cambridge Univ. Press, Cambridge, 2000, 608 pp.
[35] Podvigina, O. M. and Krasilnikov, P. S., “Evolution of Obliquity of an Exoplanet: A Non-Resonant Case”, Icarus, 335 (2020), 113371
[36] Podvigina, O. M. and Krasilnikov, P. S., “Impact of a Moon on the Evolution of a Planet's Rotation Axis: A Non-Resonant Case”, Celestial Mech. Dynam. Astronom., 134:3 (2022), 21, 24 pp.
[37] Quarles, B., Barnes, J. W., Lissauer, J. J., and Chambers, J., “Obliquity Evolution of the Potentially Habitable Exoplanet Kepler-62f”, Astrobiology, 20:1 (2020), 73–90
[38] Saillenfest, M., Laskar, J., and Boué, G., “Secular Spin-Axis Dynamics of Exoplanets”, Astron. Astroph., 623 (2019), A4, 21 pp.
[39] Shan, Y. and Li, G., “Obliquity Variations of Habitable Zone Planets Kepler-62f and Kepler-186f”, Astron. J., 155:6 (2018), 237, 15 pp.
[40] Spiegel, D. S., Menou, K., and Scharf, C. A., “Habitable Climates: The Influence of Obliquity”, Astrophys. J., 691:1 (2009), 596–610
[41] Touma, J. and Wisdom, J., “The Chaotic Obliquity of Mars”, Science, 259:5099 (1993), 1294–1297