Rotation of a Planet in a Three-Body System:
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 527-541.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the temporal evolution of the rotation axis of a planet in a system comprised of the planet (which we call an exo-Earth), a star (an exo-Sun) and a satellite (an exo-Moon). The planet is assumed to be rigid and almost spherical, the difference between the largest and the smallest principal moments of inertia being a small parameter of the problem. The orbit of the planet around the star is a Keplerian ellipse. The orbit of the satellite is a Keplerian ellipse with a constant inclination to the ecliptic, involved in two types of slow precessional motion, nodal and apsidal. Applying time averaging over the fast variables associated with the frequencies of the motion of exo-Earth and exo-Moon, we obtain Hamilton’s equations for the evolution of the angular momentum axis of the exo-Earth. Using a canonical change of variables, we show that the equations are integrable. Assuming that the exo-Earth is axially symmetric and its symmetry and rotation axes coincide, we identify possible types of motions of the vector of angular momentum on the celestial sphere. Also, we calculate the range of the nutation angle as a function of the initial conditions. (By the range of the nutation angle we mean the difference between its maximal and minimal values.)
Keywords: exoplanet, averaging, Hamiltonian dynamics.
Mots-clés : nutation angle
@article{ND_2022_18_4_a4,
     author = {O. M. Podvigina},
     title = {Rotation of a {Planet} in a {Three-Body} {System:}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {527--541},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a4/}
}
TY  - JOUR
AU  - O. M. Podvigina
TI  - Rotation of a Planet in a Three-Body System:
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 527
EP  - 541
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_4_a4/
LA  - en
ID  - ND_2022_18_4_a4
ER  - 
%0 Journal Article
%A O. M. Podvigina
%T Rotation of a Planet in a Three-Body System:
%J Russian journal of nonlinear dynamics
%D 2022
%P 527-541
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_4_a4/
%G en
%F ND_2022_18_4_a4
O. M. Podvigina. Rotation of a Planet in a Three-Body System:. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 527-541. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a4/

[1] Andoyer, M. H., Cours de Mécaniquee Céleste, v. 1, Gauthier-Villars, Paris, 1923, vi,439 pp.

[2] Armstrong, J. C., Barnes, R., Domagal-Goldman, S., Breiner, J., Quinn, T. R., and Meadows, V. C., “Effects of Extreme Obliquity Variations on the Habitability of Exoplanets”, Astrobiology, 14:4 (2014), 277–291

[3] Arnol'd, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, xiv+518 pp.

[4] Atobe, K. and Ida, S., “Obliquity Evolution of Extrasolar Terrestrial Planets”, Icarus, 188:1 (2007), 1–17

[5] Beletskii, V. V., Motion of an Artificial Satellite about Its Center of Mass, Israel Program for Scientific Translations, Jerusalem, 1966, x, 261 pp.

[6] Beletskii, V. V., “Resonance Rotation of Celestial Bodies and Cassini's Laws”, Celestial Mech., 6 (1972), 356–378

[7] Beletskii, V. V., Satellite's Motion about Center of Mass in a Gravitational Field, MGU, Moscow, 1975, 308 pp. (Russian)

[8] Boué, G. and Laskar, J., “A Collisionless Scenario for Uranus Tilting”, Astrophys. J., 712:1 (2010), L44–L47

[9] Boué, G., Laskar, J., and Kuchynka, P., “Speed Limit on Neptune Migration Imposed by Saturn Tilting”, Astrophys. J., 702:1 (2009), L19–L22

[10] Brunini, A., “Correction: Origin of the Obliquities of the Giant Planets in Mutual Interaction in the Early Solar System”, Nature, 443:7114 (2006), 1013

[11] Brunini, A., “Origin of the Obliquities of the Giant Planets in Mutual Interaction in the Early Solar System”, Nature, 440:7088 (2006), 1163–1165

[12] Correia, A. C. M. and Laskar, J., “Long-Term Evolution of the Spin of Venus: 2. Numerical Simulations”, Icarus, 163:1 (2003), 24–45

[13] Correia, A. C. M., Laskar, J., and Néron de Surgy, O., “Long-Term Evolution of the Spin of Venus: 1. Theory”, Icarus, 163:1 (2003), 1–23

[14] Dehant, V. and Mathews, P. M., Precession, Nutation and Wobble of the Earth, Cambridge Univ. Press, Cambridge, 2015, 554 pp.

[15] Ferreira, D., Marshall, J., O'Gorman, P. A., and Seager, S., “Climate at High-Obliquity”, Icarus, 243 (2014), 236–248

[16] Heller, R., Leconte, J., and Barnes, R., “Tidal Obliquity Evolution of Potentially Habitable Planets”, Astron. Astrophys., 528 (2011), A27, 16 pp.

[17] Henrard, J. and Lemaitre, A., “A Second Fundamental Model for Resonance”, Celestial Mech., 30 (1983), 197–218

[18] Kilic, C., Raible, C. C., and Stocker, T. F., “Multiple Climate States of Habitable Exoplanets: The Role of Obliquity and Irradiance”, Astrophys. J., 844:2 (2017), 147, 13 pp.

[19] Kinoshita, H., “Theory of the Rotation of the Rigid Earth”, Celestial Mech., 15:3 (1977), 277–326

[20] Kozai, Y., “Secular Perturbations of Asteroids with High Inclination and Eccentricity”, Astron. J., 67 (1962), 591–598

[21] Krasilnikov, P. S., Applied Methods for the Study of Nonlinear Oscillations, R Dynamics, Institute of Computer Science, Izhevsk, 2015, 528 pp. (Russian)

[22] Kosmicheskie Issledovaniya, 56:4 (2018), 326–336 (Russian)

[23] Krasilnikov, P. S. and Podvigina, O. M., “On Evolution of the Planet's Obliquity in a Non-Resonant Planetary System”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:4 (2018), 549–564 (Russian)

[24] Kosmicheskie Issledovaniya, 31:6 (1993), 11–21 (Russian)

[25] Laskar, J., Correia, A. M. C., Gastineau, M., Joutel, F., Levrard, B., and Robutel, P., “Long Term Evolution and Chaotic Diffusion of the Insolation Quantities of Mars”, Icarus, 170:2 (2004), 343–364

[26] Laskar, J., Joutel, F., and Robutel, P., “Stabilization of the Earth's Obliquity by the Moon”, Nature, 361:6413 (1993), 615–617

[27] Laskar, J., Joutel, F., and Boudin, F., “Orbital, Precessional and Insolation Quantities for the Earth from $-20$ Myr to $+10$ Myr”, Astron. Astroph., 270:1–2 (1993), 522–533

[28] Laskar, J. and Robutel, P., “The Chaotic Obliquity of the Planets”, Nature, 361:6413 (1993), 608–612

[29] Lidov, M. L., “The Evolution of Orbits of Artificial Satellites of Planets under the Action of Gravitational Perturbations of External Bodies”, Planet. Space Sci., 9:10 (1962), 719–759

[30] Lidov, M. L. and Ziglin, S. L., “The Analysis of Restricted Circular Twice-Averaged Three Body Problem in the Case of Close Orbits”, Celestial Mech., 9:2 (1974), 151–173

[31] Lissauer, J. J., Barnes, J. W., and Chambers, J. E., “Obliquity Variations of a Moonless Earth”, Icarus, 217:1 (2011), 77–87

[32] Markeev, A. P. and Krasilnikov, P. S., “On Motion of a Satellite Relative to the Center of Mass in the Elliptic Restricted Three Body Problem”, Kosmicheskie Issledovaniya, 19:2 (1981), 178–190 (Russian)

[33] Milankovitch, M., Canon of Insolation and the Ice-Age Problem, Israel Program for Scientific Translations, Jerusalem, 1969, xxiii, 484 pp.

[34] Murray, C. D. and Dermott, S. F., Solar System Dynamics, Cambridge Univ. Press, Cambridge, 2000, 608 pp.

[35] Podvigina, O. M. and Krasilnikov, P. S., “Evolution of Obliquity of an Exoplanet: A Non-Resonant Case”, Icarus, 335 (2020), 113371

[36] Podvigina, O. M. and Krasilnikov, P. S., “Impact of a Moon on the Evolution of a Planet's Rotation Axis: A Non-Resonant Case”, Celestial Mech. Dynam. Astronom., 134:3 (2022), 21, 24 pp.

[37] Quarles, B., Barnes, J. W., Lissauer, J. J., and Chambers, J., “Obliquity Evolution of the Potentially Habitable Exoplanet Kepler-62f”, Astrobiology, 20:1 (2020), 73–90

[38] Saillenfest, M., Laskar, J., and Boué, G., “Secular Spin-Axis Dynamics of Exoplanets”, Astron. Astroph., 623 (2019), A4, 21 pp.

[39] Shan, Y. and Li, G., “Obliquity Variations of Habitable Zone Planets Kepler-62f and Kepler-186f”, Astron. J., 155:6 (2018), 237, 15 pp.

[40] Spiegel, D. S., Menou, K., and Scharf, C. A., “Habitable Climates: The Influence of Obliquity”, Astrophys. J., 691:1 (2009), 596–610

[41] Touma, J. and Wisdom, J., “The Chaotic Obliquity of Mars”, Science, 259:5099 (1993), 1294–1297