Parametric Resonance in the Oscillations of a Charged
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 513-526.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the mechanical system consisting of the following variant of the planar pendulum. The suspension point oscillates harmonically in the vertical direction, with small amplitude $\varepsilon$, about the center of a circumference which is located in the plane of oscillations of the pendulum. The circumference has a uniform distribution of electric charges with total charge $Q$ and the bob of the pendulum, with mass $m$, carries an electric charge $q$. We study the motion of the pendulum as a function of three parameters: $\varepsilon$, the ratio of charges $\mu=\frac{q}{Q}$ and a parameter $\alpha$ related to the frequency of oscillations of the suspension point and the length of the pendulum. As the speed of oscillations of the mass $m$ are small magnetic effects are disregarded and the motion is subjected only to the gravity force and the electrostatic force. The electrostatic potential is determined in terms of the Jacobi elliptic functions. We study the parametric resonance of the linearized equations about the stable equilibrium finding the boundary surfaces of stability domains using the Deprit – Hori method.
Keywords: planar charged pendulum, Hamiltonian systems, parametric resonance, Deprit – Hori method, Jacobi elliptic integrals.
@article{ND_2022_18_4_a3,
     author = {H. E. Cabral and A. C. Carvalho},
     title = {Parametric {Resonance} in the {Oscillations} of a {Charged}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {513--526},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a3/}
}
TY  - JOUR
AU  - H. E. Cabral
AU  - A. C. Carvalho
TI  - Parametric Resonance in the Oscillations of a Charged
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 513
EP  - 526
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_4_a3/
LA  - en
ID  - ND_2022_18_4_a3
ER  - 
%0 Journal Article
%A H. E. Cabral
%A A. C. Carvalho
%T Parametric Resonance in the Oscillations of a Charged
%J Russian journal of nonlinear dynamics
%D 2022
%P 513-526
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_4_a3/
%G en
%F ND_2022_18_4_a3
H. E. Cabral; A. C. Carvalho. Parametric Resonance in the Oscillations of a Charged. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 513-526. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a3/

[1] Cruz Araujo, G. and Cabral, H. E., “Parametric Stability in a $P+2$-Body Problem”, J. Dynam. Differential Equations, 30:2 (2018), 719–742

[2] Cruz Araujo, G. and Cabral, H. E., “Parametric Stability of a Charged Pendulum with an Oscillating Suspension Point”, Regul. Chaotic Dyn., 26:1 (2021), 39–60

[3] Prikl. Mat. Mekh., 59:6 (1995), 922–929 (Russian)

[4] Byrd, P. F. and Friedman, M. D., Handbook of Elliptic Integrals for Engineers and Scientists, Grundlehren Math. Wiss., 67, 2nd ed., rev., Springer, Heidelberg, 1971, xvi+358 pp.

[5] Cabral, H. E. and Carvalho, A. C., “Parametric Stability of a Charged Pendulum with Oscillating Suspension Point”, J. Differential Equations, 284 (2021), 23–38

[6] de Menezes Neto, J. L. and Cabral, H. E., “Parametric Stability of a Pendulum with Variable Length in an Elliptic Orbit”, Regul. Chaotic Dyn., 25:4 (2020), 323–329

[7] Brandão Dias, L. and Cabral, H. E., “Parametric Stability in a Sitnikov-Like Restricted $P$-Body Problem”, J. Dynam. Differential Equations, 30:1 (2018), 81–92

[8] Gel'fand, I. M. and Lidskii, V. B., “On the Structure of Stability Regions of Linear Canonical Systems of Differential Equations with Periodic Coefficients”, Uspekhi Mat. Nauk, 10:1 (1955), 3–40 (Russian)

[9] Kamel, A. A., “Expansion Formulae in Canonical Transformations Depending on a Small Parameter”, Celestial Mech., 1:2 (1969), 190–199

[10] Meyer, K. R. and Offin, D. C., Introduction to Hamiltonian Dynamical Systems and the $N$-Body Problem, Appl. Math. Sci., 90, 3rd ed., Springer, Cham, 2017, xiii + 384 pp.

[11] Krein, M. G., “Generalization of Certain Investigations of A. M. Liapunov on Linear Differential Equations with Periodic Coefficients”, Dokl. Akad. Nauk SSSR (N.S.), 73:3 (1950), 445–448 (Russian)

[12] Markeev, A. P., Linear Hamiltonian Systems and Some Problems of Stability of the Satellite Center of Mass, R Dynamics, Institute of Computer Science, Izhevsk, 2009, 396 pp. (Russian)

[13] Moser, J., “New Aspects in the Theory of Stability of Hamiltonian Systems”, Comm. Pure Appl. Math., 11:1 (1958), 81–114

[14] Yakubovich, V. A. and Starzhinskii, V. M., Linear Differential Equations with Periodic Coefficients: In 2 Vols., Wiley, New York, 1975, xxiv+839 pp.