Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_4_a3, author = {H. E. Cabral and A. C. Carvalho}, title = {Parametric {Resonance} in the {Oscillations} of a {Charged}}, journal = {Russian journal of nonlinear dynamics}, pages = {513--526}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a3/} }
H. E. Cabral; A. C. Carvalho. Parametric Resonance in the Oscillations of a Charged. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 513-526. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a3/
[1] Cruz Araujo, G. and Cabral, H. E., “Parametric Stability in a $P+2$-Body Problem”, J. Dynam. Differential Equations, 30:2 (2018), 719–742
[2] Cruz Araujo, G. and Cabral, H. E., “Parametric Stability of a Charged Pendulum with an Oscillating Suspension Point”, Regul. Chaotic Dyn., 26:1 (2021), 39–60
[3] Prikl. Mat. Mekh., 59:6 (1995), 922–929 (Russian)
[4] Byrd, P. F. and Friedman, M. D., Handbook of Elliptic Integrals for Engineers and Scientists, Grundlehren Math. Wiss., 67, 2nd ed., rev., Springer, Heidelberg, 1971, xvi+358 pp.
[5] Cabral, H. E. and Carvalho, A. C., “Parametric Stability of a Charged Pendulum with Oscillating Suspension Point”, J. Differential Equations, 284 (2021), 23–38
[6] de Menezes Neto, J. L. and Cabral, H. E., “Parametric Stability of a Pendulum with Variable Length in an Elliptic Orbit”, Regul. Chaotic Dyn., 25:4 (2020), 323–329
[7] Brandão Dias, L. and Cabral, H. E., “Parametric Stability in a Sitnikov-Like Restricted $P$-Body Problem”, J. Dynam. Differential Equations, 30:1 (2018), 81–92
[8] Gel'fand, I. M. and Lidskii, V. B., “On the Structure of Stability Regions of Linear Canonical Systems of Differential Equations with Periodic Coefficients”, Uspekhi Mat. Nauk, 10:1 (1955), 3–40 (Russian)
[9] Kamel, A. A., “Expansion Formulae in Canonical Transformations Depending on a Small Parameter”, Celestial Mech., 1:2 (1969), 190–199
[10] Meyer, K. R. and Offin, D. C., Introduction to Hamiltonian Dynamical Systems and the $N$-Body Problem, Appl. Math. Sci., 90, 3rd ed., Springer, Cham, 2017, xiii + 384 pp.
[11] Krein, M. G., “Generalization of Certain Investigations of A. M. Liapunov on Linear Differential Equations with Periodic Coefficients”, Dokl. Akad. Nauk SSSR (N.S.), 73:3 (1950), 445–448 (Russian)
[12] Markeev, A. P., Linear Hamiltonian Systems and Some Problems of Stability of the Satellite Center of Mass, R Dynamics, Institute of Computer Science, Izhevsk, 2009, 396 pp. (Russian)
[13] Moser, J., “New Aspects in the Theory of Stability of Hamiltonian Systems”, Comm. Pure Appl. Math., 11:1 (1958), 81–114
[14] Yakubovich, V. A. and Starzhinskii, V. M., Linear Differential Equations with Periodic Coefficients: In 2 Vols., Wiley, New York, 1975, xxiv+839 pp.