Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_4_a2, author = {O. V. Kholostovaa}, title = {On {Nonlinear} {Oscillations} of a {Time-Periodic}}, journal = {Russian journal of nonlinear dynamics}, pages = {481--512}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a2/} }
O. V. Kholostovaa. On Nonlinear Oscillations of a Time-Periodic. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 481-512. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a2/
[1] Dokl. Akad. Nauk, 402:3 (2005), 339–343 (Russian)
[2] Prikl. Mat. Mekh., 70:2 (2006), 200–220 (Russian)
[3] Markeev, A. P., Linear Hamiltonian Systems and Some Problems of Stability of the Satellite Center of Mass, R Dynamics, Institute of Computer Science, Izhevsk, 2009, 396 pp. (Russian)
[4] Kholostova, O. V., “On Periodic Motions of a Nonautonomous Hamiltonian System in One Case of Multiple Parametric Resonance”, Nelin. Dinam., 13:4 (2017), 477–504 (Russian)
[5] Prikl. Mat. Mekh., 83:2 (2019), 175–201 (Russian)
[6] Kholostova, O. V., “On the Motions of One Near-Autonomous Hamiltonian System at a 1:1:1 Resonance”, Regul. Chaotic Dyn., 24:3 (2019), 235–265
[7] Kholostova, O. V., “On the Motions of Near-Autonomous Hamiltonian System in the Cases of Two Zero Frequencies”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:4 (2020), 672–695 (Russian)
[8] Kholostova, O. V., “On Nonlinear Oscillations of a Near-Autonomous Hamiltonian System in the Case of Two Identical Integer or Half-Integer Frequencies”, Russian J. Nonlinear Dyn., 17:1 (2021), 77–102
[9] Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Nauka, Moscow, 1978, 312 pp. (Russian)
[10] Moser, J., “Convergent Series Expansions for Quasi-Periodic Motions”, Math. Ann., 169:1 (1976), 136–176
[11] Dokl. Akad. Nauk SSSR, 165:6 (1965), 1245–1248 (Russian)
[12] Byrd, P. F. and Friedman, M. D., Handbook of Elliptic Integrals for Engineers and Scientists, Grundlehren Math. Wiss., 67, 2nd ed., rev., Springer, Heidelberg, 1971, xvi+358 pp.
[13] Arnol'd, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, xiv+518 pp.
[14] Malkin, I. G., Some Problems in the Theory of Nonlinear Oscillations: In 2 Vols., v. 1, United States Atomic Energy Commission, Technical Information Service, Germantown, Md., 1959
[15] Markeev, A. P., “On Rotational Motion of a Dynamically Symmetrical Satellite in an Elliptic Orbit”, Kosmicheskie Issledovaniya, 5:4 (1967), 530–539 (Russian)
[16] Beletskii, V. V., Satellite's Motion about Center of Mass in a Gravitational Field, MGU, Moscow, 1975, 308 pp. (Russian)
[17] Glimm, J., “Formal Stability of Hamiltonian Systems”, Comm. Pure Appl. Math., 17:4 (1964), 509–526