A Nonholonomic Model and Complete Controllability
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 681-707.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the controlled motion of a three-link wheeled snake robot propelled by changing the angles between the central and lateral links. The limits on the applicability of the nonholonomic model for the problem of interest are revealed. It is shown that the system under consideration is completely controllable according to the Rashevsky – Chow theorem. Possible types of motion of the system under periodic snake-like controls are presented using Fourier expansions. The relation of the form of the trajectory in the space of controls to the type of motion involved is found. It is shown that, if the trajectory in the space of controls is centrally symmetric, the robot moves with nonzero constant average velocity in some direction.
Keywords: nonholonomic mechanics, wheeled vehicle, snake robot, controllability, periodic control.
@article{ND_2022_18_4_a14,
     author = {E. M. Artemova and A. A. Kilin},
     title = {A {Nonholonomic} {Model} and {Complete} {Controllability}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {681--707},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a14/}
}
TY  - JOUR
AU  - E. M. Artemova
AU  - A. A. Kilin
TI  - A Nonholonomic Model and Complete Controllability
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 681
EP  - 707
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_4_a14/
LA  - en
ID  - ND_2022_18_4_a14
ER  - 
%0 Journal Article
%A E. M. Artemova
%A A. A. Kilin
%T A Nonholonomic Model and Complete Controllability
%J Russian journal of nonlinear dynamics
%D 2022
%P 681-707
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_4_a14/
%G en
%F ND_2022_18_4_a14
E. M. Artemova; A. A. Kilin. A Nonholonomic Model and Complete Controllability. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 681-707. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a14/

[1] Math. Sb., 24:1 (1903), 139–168 (Russian)

[2] Cohen, C. M., “The Tippe Top Revisited”, Am. J. Phys., 45:1 (1977), 12–17

[3] Walker, J., “The Mysterious “Rattleback”: A Stone That Spins in One Direction and Then Reverses”, Sci. Am., 241:4 (1979), 172–184

[4] Karavaev, Yu. L. and Kilin, A. A., “The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform”, Regul. Chaotic Dyn., 20:2 (2015), 134–152

[5] Bizyaev, I. A., “The Inertial Motion of a Roller Racer”, Regul. Chaotic Dyn., 22:3 (2017), 239–247

[6] Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., “Historical and Critical Review of the Development of Nonholonomic Mechanics: The Classical Period”, Regul. Chaotic Dyn., 21:4 (2016), 455–476

[7] Borisov, A. V. and Mamaev, I. S., “On the History of the Development of the Nonholonomic Dynamics”, Regul. Chaotic Dyn., 7:1 (2002), 43–47

[8] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “On the Hadamard – Hamel Problem and the Dynamics of Wheeled Vehicles”, Regul. Chaotic Dyn., 20:6 (2015), 752–766

[9] Hadamard, J., “Sur les mouvements de roulement”, Mémoires de la Société des sciences physiques et naturelles de Bordeaux, sér. 4, 5 (1895), 397–417

[10] Hamel, G., “Die Lagrange-Eulerschen Gleichungen der Mechanik”, Z. Math. u. Phys., 50 (1904), 1–57

[11] Mat. Sb., 28:2 (1912), 303–314 (Russian)

[12] Prikl. Mat. Mekh., 73:2 (2009), 219–225 (Russian)

[13] Bizyaev I. A., Borisov A. V., Mamaev I. S., “Dynamics of the Chaplygin Sleigh on a Cylinder”, Regul. Chaotic Dyn., 21:1 (2016), 136–146

[14] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration”, Regul. Chaotic Dyn., 22:8 (2017), 955–975

[15] Osborne, J. M. and Zenkov, D. V., “Steering the Chaplygin Sleigh by a Moving Mass”, Proc. of the 44th IEEE Conf. on Decision and Control (Seville, Spain, Dec 2005), 1114–1118

[16] Kuznetsov, S. P., “Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint”, Regul. Chaotic Dyn., 23:2 (2018), 178–192

[17] Fedonyuk, V. and Tallapragada, Ph., “Sinusoidal Control and Limit Cycle Analysis of the Dissipative Chaplygin Sleigh”, Nonlinear Dyn., 93:2 (2018), 835–846

[18] Fedorov, Yu. N. and García-Naranjo, L. C., “The Hydrodynamic Chaplygin Sleigh”, J. Phys. A, 43:43 (2010), 434013, 18 pp.

[19] Chan, R. P. M., Stol, K. A., and Halkyard, C. R., “Review of Modelling and Control of Two-Wheeled Robots”, Annu. Rev. Control, 37:1 (2013), 89–103

[20] Oriolo, G., “Wheeled Robots”, Encyclopedia of Systems and Control, eds. J. Baillieul, T. Samad, Springer, London, 2015, 1548–1554

[21] Moiseev, I. and Sachkov, Yu. L., “Maxwell Strata in Sub-Riemannian Problem on the Group of Motions of a Plane”, ESAIM Control Optim. Calc. Var., 16 (2010), 380–399

[22] Sachkov, Yu. L., “Conjugate and Cut Time in the Sub-Riemannian Problem on the Group of Motions of a Plane”, ESAIM Control Optim. Calc. Var., 16 (2010), 1018–1039

[23] Sachkov, Yu. L., “Cut Locus and Optimal Synthesis in the Sub-Riemannian Problem on the Group of Motions of a Plane”, ESAIM Control Optim. Calc. Var., 17:2 (2011), 293–321

[24] Ardentov, A. A., Karavaev, Yu. L., and Yefremov, K. S., “Euler Elasticas for Optimal Control of the Motion of Mobile Wheeled Robots: The Problem of Experimental Realization”, Regul. Chaotic Dyn., 24:3 (2019), 312–328 \itemsep=3pt

[25] Barraquand, J. and Latombe, J.-C., “On Non-Holonomic Mobile Robots and Optimal Maneuvering”, Proc. of IEEE Internat. Symp. on Intelligent Control (Albany, N.Y., 1989), 340–347

[26] Laumond, J.-P., Jacobs, P., Taïx, M., and Murray, R., “A Motion Planner for Nonholonomic Mobile Robots”, IEEE Trans. Robot. Autom., 10:5 (1994), 577–593

[27] Rocard Y., L'instabilité en mécanique: Automobiles, avions, ponts suspendus, Masson, Paris, 1954, 239 pp.

[28] Bottema, O., “Die Bewegung eines einfachen Wagenmodells”, Z. Angew. Math. Mech., 44:12 (1964), 585–593

[29] Krishnaprasad, P. S. and Tsakiris, D. P., “Oscillations, ${\rm SE}(2)$-Snakes and Motion Control: A Study of the Roller Racer”, Dyn. Syst., 16:4 (2001), 347–397

[30] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “Exotic Dynamics of Nonholonomic Roller Racer with Periodic Control”, Regul. Chaotic Dyn., 23:7–8 (2018), 983–994

[31] Yefremov, K. S., Ivanova, T. B., Kilin, A. A., and Karavaev, Yu. L., “Theoretical and Experimental Investigation of the Controlled Motion of the Roller Racer”, Proc. of the IEEE Internat. Conf. “Nonlinearity, Information and Robotics” (Innopolis, Russia, 2020), 5 pp.

[32] Nirakh, A. R., Brennan, S. N., and Gandhi, F. S., “An Implicit Model for Snake Robot Locomotion and Gait Optimization”, Proc. of the ASME 2005 International Mechanical Engineering Congress and Exposition (Orlando, Flo., Nov 2005), IMECE2005-82742, 1733–1742

[33] Jing, F. and Alben, S., “Optimization of Two- and Three-Link Snakelike Locomotion”, Phys. Rev. E, 87:2 (2013), 022711, 15 pp.

[34] Cheng, P., Frazzoli, E., and Kumar, V., “Motion Planning for the Roller Racer with a Sticking/Slipping Switching Model”, IEEE Internat. Conf. on Robotics and Automation (ICRA'2006, Orlando, Fla., 2006), 1637–1642

[35] Altafini, C., Speranzon, A., and Johansson, K. H., “Hybrid Control of a Truck and Trailer Vehicle”, HSCC'2002: Hybrid Systems: Computation and Control, Lecture Notes in Comput. Sci., 2289, eds. C. J. Tomlin, M. R. Greenstreet, Springer, Berlin, 2002, 21–34

[36] Divelbiss, A. W. and Wen, J. T., “Trajectory Tracking Control of a Car-Trailer System”, IEEE Trans. Control Syst. Technol., 5:3 (1997), 269–278

[37] Lamiraux, F., Sekhavat, S., and Laumond, J. P., “Motion Planning and Control for Hilare Pulling a Trailer”, IEEE Trans. Robot. Automat., 15 (1999), 640–652

[38] Latif, A. R., Chalhoub, N., and Pilipchuk, V., Nonlinear Dyn., 99:4 (2020), 2505–2526

[39] Ardentov, A. A., “Controlling of a Mobile Robot with a Trailer and Its Nilpotent Approximation”, Regul. Chaotic Dyn., 21:7–8 (2016), 775–791

[40] Chitsaz, H., “On Time-Optimal Trajectories for a Car-Like Robot with One Trailer”, SIAM Conf. on Control and Its Applications (San Diego, Calif., 2013), 114–120

[41] Avtomat. i Telemekh., 2021, no. 1, 95–118 (Russian)

[42] Ardentov, A. A. and Yefremov, K. S., “Automatic Reparking of the Robot Trailer along Suboptimal Paths”, Proc. of the Internat. Conf. “Nonlinearity, Information and Robotics” (Innopolis, Russia, Aug 2021), 5 pp.

[43] Kong, S. G. and Kosko, B., “Adaptive Fuzzy Systems for Backing Up a Truck-and-Trailer”, IEEE Trans. Neural Netw., 3:2 (1992), 211–223

[44] Nguyen, D. H. and Widrow, B., “Neural Networks for Self-Learning Control Systems”, IEEE Control Syst. Mag., 10:3 (1990), 18–23

[45] Nguyen, D. H. and Widrow, B., “The Truck Backer-Upper: An Example of Self-Learning in Neural Networks”, Advanced Neural Computers, ed. R. Eckmiller, Elsevier/North-Holland, Amsterdam, 1990, 11–19 \itemsep=2pt

[46] Božek, P., Karavaev, Yu. L., Ardentov, A. A., and Yefremov, K. S., “Neural Network Control of a Wheeled Mobile Robot Based on Optimal Trajectories”, Int. J. Adv. Rob. Syst., 17:2 (2020), 10 pp.

[47] Ostrowski, J., Lewis, A., Murray, R., and Burdick, J., “Nonholonomic Mechanics and Locomotion: The Snakeboard Example”, Proc. of the 1994 IEEE Internat. Conf. on Robotics and Automation (San Diego, Calif.,May 1994), v. 3, 2391–2397

[48] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “Invariant Submanifolds of Genus $5$ and a Cantor Staircase in the Nonholonomic Model of a Snakeboard”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29:3 (2019), 1930008, 19 pp.

[49] Kuleshov, A. S., “Further Development of the Mathematical Model of a Snakeboard”, Regul. Chaotic Dyn., 12:3 (2007), 321–334

[50] Bullo, F. and Lewis, A. D., “Kinematic Controllability and Motion Planning for the Snakeboard”, IEEE Robot. Autom., 19:3 (2003), 494–498

[51] Shammas, E. and de Oliveira, M., “Motion Planning for the Snakeboard”, Int. J. Robot. Res., 31:7 (2012), 872–885

[52] Gray, J., “The Mechanism of Locomotion in Snakes”, J. Exp. Biol., 23:2 (1946), 101–120

[53] Hirose, S., Biologically Inspired Robots: Snake-Like Locomotors and Manipulators, Oxford Univ. Press, New York, 1993, 240 pp.

[54] Gao, M., Huang, M., Tang, K., Lang, X., and Gao, J., “Design, Analysis, and Control of a Multilink Magnetic Wheeled Pipeline Robot”, IEEE Access, 10 (2022), 67168–67180

[55] Transeth, A. A., Modelling and Control of Snake Robots, PhD Thesis, Norwegian Univ. of Science and Technology, Trondheim, 2008, 192 pp.

[56] Tanaka, M. and Matsuno, F., “Modeling and Control of Head Raising Snake Robots by Using Kinematic Redundancy”, J. Intell. Robot. Syst., 75:1 (2014), 53–69

[57] Crespi, A., Badertscher, A., Guignard, A., and Ijspeert, A. J., “AmphiBot I: An Amphibious Snake-Like Robot”, Robot. Auton. Syst., 50:4 (2005), 163–175

[58] Liljebäck, P., Pettersen, K. Y., Stavdahl, Ø., and Gravdahl, J. T., “A Review on Modelling, Implementation, and Control of Snake Robots”, Robot. Auton. Syst., 60:1 (2012), 29–40

[59] Itani, O. and Shammas, E., “Motion Planning for Redundant Multi-Bodied Planar Kinematic Snake Robots”, Nonlinear Dyn., 104:4 (2021), 3845–3860

[60] Lipták, T., Virgala, I., Frankovský, P., Šarga, P., Gmiterko, A., and Baločková, L., “A Geometric Approach to Modeling of Four- and Five-Link Planar Snake-Like Robot”, Int. J. Adv. Robot. Syst., 13:5 (2016), 9 pp.

[61] Artemova, E. M. and Kilin, A. A., “An Integrable Case in the Dynamics of a Three-Link Vehicle”, Internat. Conf. “Nonlinearity, Information and Robotics” (Innopolis, Russia, Dec 2020), 6 pp.

[62] Bolzern, P., DeSantis, R., Locatelli, A., and Togno, S., “Dynamic Model of a Two-Trailer Articulated Vehicle Subject to Nonholonomic Constraints”, Robotica, 14:4 (1996), 445–450

[63] Dear, T., Buchanan, B., Abrajan-Guerrero, R., Kelly, S. D., Travers, M., and Choset, H., “Locomotion of a Multi-Link Non-Holonomic Snake Robot with Passive Joints”, Int. J. Robot. Res., 39:5 (2020), 598–616

[64] Bravo-Doddoli, A. and García-Naranjo, L. C., “The Dynamics of an Articulated $n$-Trailer Vehicle”, Regul. Chaotic Dyn., 20:5 (2015), 497–517

[65] Dear, T., Kelly, S. D., Travers, M., and Choset, H., “Locomotion of a Multi-Link Nonholonomic Snake Robot”, Proc. of the ASME 2017 Dynamic Systems and Control Conference (Tysons, Va, Oct 2017), v. 2, DSCC2017-5349, V002T21A011, 10 \enlargethispage*{\baselineskip} pp.

[66] Shammas, E. A., Choset, H., and Rizzi, A. A., “Geometric Motion Planning Analysis for Two Classes of Underactuated Mechanical Systems”, Int. J. Robot. Res., 26:10 (2007), 1043–1073

[67] Surov, M., Gusev, S., and Freidovich, L., “Constructing Transverse Coordinates for Orbital Stabilization of Periodic Trajectories”, ACC'2020: American Control Conference (Denver, Colo., July 2020), 836–841 \goodbreak

[68] Mashtakov A. P., “Algorithms and Software Solving a Motion Planning Problem for Nonholonomic Five-dimensional Control Systems”, Program Systems: Theory and Applications, 3:1 (2012), 3–29 (Russian)

[69] Dear, T., Kelly, S. D., Travers, M., and Choset, H., “Locomotive Analysis of a Single-Input Three-Link Snake Robot”, Proc. of the IEEE 55th Conf. on Decision and Control (Las Vegas, Nev., Dec 2016), 7542–7547

[70] Nansai, S., Iwase, M., and Itoh, H., “Generalized Singularity Analysis of Snake-Like Robot”, Appl. Sci., 8:10 (2018), 1873, 22 pp.

[71] Tanaka, M. and Tanaka, K., “Singularity Analysis of a Snake Robot and an Articulated Mobile Robot with Unconstrained Links”, IEEE Trans. Control Syst. Technol., 24:6 (2016), 2070–2081

[72] Yona, T. and Or, Y., “The Wheeled Three-Link Snake Model: Singularities in Nonholonomic Constraints and Stick-Slip Hybrid Dynamics Induced by Coulomb Friction”, Nonlinear Dyn., 95:3 (2019), 2307–2324

[73] Dear, T., Kelly, S. D., Travers, M., and Choset, H., “The Three-Link Nonholonomic Snake As a Hybrid Kinodynamic System”, ACC'2016: American Control Conference (Boston, Mass., July 2016), 7269–7274

[74] Rashevsky, P. K., “Any Two Points of a Totally Nonholonomic Space May Be Connected by an Admissible Line”, Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math., 3:2 (1938), 83–94 (Russian)

[75] Takagi, Y., Sueoka, Y., Ishikawa, M., and Osuka, K., “Analysis and Control of a Snake-Like Robot with Controllable Side-Thrust Links”, Proc. of the 11th Asian Control Conf. (ASCC, Gold Coast, QLD, Australia, Dec 2017), 754–759

[76] Hrdina, J., Návrat, A., and Vašík, P., “Control of 3-Link Robotic Snake Based on Conformal Geometric Algebra”, Adv. Appl. Clifford Algebras, 26:3 (2016), 1069–1080

[77] Tilbury, D., Murray, R. M., and Sastry, S. Sh., “Trajectory Generation for the $n$-Trailer Problem Using Goursat Normal Form”, IEEE Trans. Automat. Control, 40:5 (1995), 802–819