Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_4_a14, author = {E. M. Artemova and A. A. Kilin}, title = {A {Nonholonomic} {Model} and {Complete} {Controllability}}, journal = {Russian journal of nonlinear dynamics}, pages = {681--707}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_4_a14/} }
E. M. Artemova; A. A. Kilin. A Nonholonomic Model and Complete Controllability. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 4, pp. 681-707. http://geodesic.mathdoc.fr/item/ND_2022_18_4_a14/
[1] Math. Sb., 24:1 (1903), 139–168 (Russian)
[2] Cohen, C. M., “The Tippe Top Revisited”, Am. J. Phys., 45:1 (1977), 12–17
[3] Walker, J., “The Mysterious “Rattleback”: A Stone That Spins in One Direction and Then Reverses”, Sci. Am., 241:4 (1979), 172–184
[4] Karavaev, Yu. L. and Kilin, A. A., “The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform”, Regul. Chaotic Dyn., 20:2 (2015), 134–152
[5] Bizyaev, I. A., “The Inertial Motion of a Roller Racer”, Regul. Chaotic Dyn., 22:3 (2017), 239–247
[6] Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., “Historical and Critical Review of the Development of Nonholonomic Mechanics: The Classical Period”, Regul. Chaotic Dyn., 21:4 (2016), 455–476
[7] Borisov, A. V. and Mamaev, I. S., “On the History of the Development of the Nonholonomic Dynamics”, Regul. Chaotic Dyn., 7:1 (2002), 43–47
[8] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “On the Hadamard – Hamel Problem and the Dynamics of Wheeled Vehicles”, Regul. Chaotic Dyn., 20:6 (2015), 752–766
[9] Hadamard, J., “Sur les mouvements de roulement”, Mémoires de la Société des sciences physiques et naturelles de Bordeaux, sér. 4, 5 (1895), 397–417
[10] Hamel, G., “Die Lagrange-Eulerschen Gleichungen der Mechanik”, Z. Math. u. Phys., 50 (1904), 1–57
[11] Mat. Sb., 28:2 (1912), 303–314 (Russian)
[12] Prikl. Mat. Mekh., 73:2 (2009), 219–225 (Russian)
[13] Bizyaev I. A., Borisov A. V., Mamaev I. S., “Dynamics of the Chaplygin Sleigh on a Cylinder”, Regul. Chaotic Dyn., 21:1 (2016), 136–146
[14] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration”, Regul. Chaotic Dyn., 22:8 (2017), 955–975
[15] Osborne, J. M. and Zenkov, D. V., “Steering the Chaplygin Sleigh by a Moving Mass”, Proc. of the 44th IEEE Conf. on Decision and Control (Seville, Spain, Dec 2005), 1114–1118
[16] Kuznetsov, S. P., “Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint”, Regul. Chaotic Dyn., 23:2 (2018), 178–192
[17] Fedonyuk, V. and Tallapragada, Ph., “Sinusoidal Control and Limit Cycle Analysis of the Dissipative Chaplygin Sleigh”, Nonlinear Dyn., 93:2 (2018), 835–846
[18] Fedorov, Yu. N. and García-Naranjo, L. C., “The Hydrodynamic Chaplygin Sleigh”, J. Phys. A, 43:43 (2010), 434013, 18 pp.
[19] Chan, R. P. M., Stol, K. A., and Halkyard, C. R., “Review of Modelling and Control of Two-Wheeled Robots”, Annu. Rev. Control, 37:1 (2013), 89–103
[20] Oriolo, G., “Wheeled Robots”, Encyclopedia of Systems and Control, eds. J. Baillieul, T. Samad, Springer, London, 2015, 1548–1554
[21] Moiseev, I. and Sachkov, Yu. L., “Maxwell Strata in Sub-Riemannian Problem on the Group of Motions of a Plane”, ESAIM Control Optim. Calc. Var., 16 (2010), 380–399
[22] Sachkov, Yu. L., “Conjugate and Cut Time in the Sub-Riemannian Problem on the Group of Motions of a Plane”, ESAIM Control Optim. Calc. Var., 16 (2010), 1018–1039
[23] Sachkov, Yu. L., “Cut Locus and Optimal Synthesis in the Sub-Riemannian Problem on the Group of Motions of a Plane”, ESAIM Control Optim. Calc. Var., 17:2 (2011), 293–321
[24] Ardentov, A. A., Karavaev, Yu. L., and Yefremov, K. S., “Euler Elasticas for Optimal Control of the Motion of Mobile Wheeled Robots: The Problem of Experimental Realization”, Regul. Chaotic Dyn., 24:3 (2019), 312–328 \itemsep=3pt
[25] Barraquand, J. and Latombe, J.-C., “On Non-Holonomic Mobile Robots and Optimal Maneuvering”, Proc. of IEEE Internat. Symp. on Intelligent Control (Albany, N.Y., 1989), 340–347
[26] Laumond, J.-P., Jacobs, P., Taïx, M., and Murray, R., “A Motion Planner for Nonholonomic Mobile Robots”, IEEE Trans. Robot. Autom., 10:5 (1994), 577–593
[27] Rocard Y., L'instabilité en mécanique: Automobiles, avions, ponts suspendus, Masson, Paris, 1954, 239 pp.
[28] Bottema, O., “Die Bewegung eines einfachen Wagenmodells”, Z. Angew. Math. Mech., 44:12 (1964), 585–593
[29] Krishnaprasad, P. S. and Tsakiris, D. P., “Oscillations, ${\rm SE}(2)$-Snakes and Motion Control: A Study of the Roller Racer”, Dyn. Syst., 16:4 (2001), 347–397
[30] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “Exotic Dynamics of Nonholonomic Roller Racer with Periodic Control”, Regul. Chaotic Dyn., 23:7–8 (2018), 983–994
[31] Yefremov, K. S., Ivanova, T. B., Kilin, A. A., and Karavaev, Yu. L., “Theoretical and Experimental Investigation of the Controlled Motion of the Roller Racer”, Proc. of the IEEE Internat. Conf. “Nonlinearity, Information and Robotics” (Innopolis, Russia, 2020), 5 pp.
[32] Nirakh, A. R., Brennan, S. N., and Gandhi, F. S., “An Implicit Model for Snake Robot Locomotion and Gait Optimization”, Proc. of the ASME 2005 International Mechanical Engineering Congress and Exposition (Orlando, Flo., Nov 2005), IMECE2005-82742, 1733–1742
[33] Jing, F. and Alben, S., “Optimization of Two- and Three-Link Snakelike Locomotion”, Phys. Rev. E, 87:2 (2013), 022711, 15 pp.
[34] Cheng, P., Frazzoli, E., and Kumar, V., “Motion Planning for the Roller Racer with a Sticking/Slipping Switching Model”, IEEE Internat. Conf. on Robotics and Automation (ICRA'2006, Orlando, Fla., 2006), 1637–1642
[35] Altafini, C., Speranzon, A., and Johansson, K. H., “Hybrid Control of a Truck and Trailer Vehicle”, HSCC'2002: Hybrid Systems: Computation and Control, Lecture Notes in Comput. Sci., 2289, eds. C. J. Tomlin, M. R. Greenstreet, Springer, Berlin, 2002, 21–34
[36] Divelbiss, A. W. and Wen, J. T., “Trajectory Tracking Control of a Car-Trailer System”, IEEE Trans. Control Syst. Technol., 5:3 (1997), 269–278
[37] Lamiraux, F., Sekhavat, S., and Laumond, J. P., “Motion Planning and Control for Hilare Pulling a Trailer”, IEEE Trans. Robot. Automat., 15 (1999), 640–652
[38] Latif, A. R., Chalhoub, N., and Pilipchuk, V., Nonlinear Dyn., 99:4 (2020), 2505–2526
[39] Ardentov, A. A., “Controlling of a Mobile Robot with a Trailer and Its Nilpotent Approximation”, Regul. Chaotic Dyn., 21:7–8 (2016), 775–791
[40] Chitsaz, H., “On Time-Optimal Trajectories for a Car-Like Robot with One Trailer”, SIAM Conf. on Control and Its Applications (San Diego, Calif., 2013), 114–120
[41] Avtomat. i Telemekh., 2021, no. 1, 95–118 (Russian)
[42] Ardentov, A. A. and Yefremov, K. S., “Automatic Reparking of the Robot Trailer along Suboptimal Paths”, Proc. of the Internat. Conf. “Nonlinearity, Information and Robotics” (Innopolis, Russia, Aug 2021), 5 pp.
[43] Kong, S. G. and Kosko, B., “Adaptive Fuzzy Systems for Backing Up a Truck-and-Trailer”, IEEE Trans. Neural Netw., 3:2 (1992), 211–223
[44] Nguyen, D. H. and Widrow, B., “Neural Networks for Self-Learning Control Systems”, IEEE Control Syst. Mag., 10:3 (1990), 18–23
[45] Nguyen, D. H. and Widrow, B., “The Truck Backer-Upper: An Example of Self-Learning in Neural Networks”, Advanced Neural Computers, ed. R. Eckmiller, Elsevier/North-Holland, Amsterdam, 1990, 11–19 \itemsep=2pt
[46] Božek, P., Karavaev, Yu. L., Ardentov, A. A., and Yefremov, K. S., “Neural Network Control of a Wheeled Mobile Robot Based on Optimal Trajectories”, Int. J. Adv. Rob. Syst., 17:2 (2020), 10 pp.
[47] Ostrowski, J., Lewis, A., Murray, R., and Burdick, J., “Nonholonomic Mechanics and Locomotion: The Snakeboard Example”, Proc. of the 1994 IEEE Internat. Conf. on Robotics and Automation (San Diego, Calif.,May 1994), v. 3, 2391–2397
[48] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “Invariant Submanifolds of Genus $5$ and a Cantor Staircase in the Nonholonomic Model of a Snakeboard”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29:3 (2019), 1930008, 19 pp.
[49] Kuleshov, A. S., “Further Development of the Mathematical Model of a Snakeboard”, Regul. Chaotic Dyn., 12:3 (2007), 321–334
[50] Bullo, F. and Lewis, A. D., “Kinematic Controllability and Motion Planning for the Snakeboard”, IEEE Robot. Autom., 19:3 (2003), 494–498
[51] Shammas, E. and de Oliveira, M., “Motion Planning for the Snakeboard”, Int. J. Robot. Res., 31:7 (2012), 872–885
[52] Gray, J., “The Mechanism of Locomotion in Snakes”, J. Exp. Biol., 23:2 (1946), 101–120
[53] Hirose, S., Biologically Inspired Robots: Snake-Like Locomotors and Manipulators, Oxford Univ. Press, New York, 1993, 240 pp.
[54] Gao, M., Huang, M., Tang, K., Lang, X., and Gao, J., “Design, Analysis, and Control of a Multilink Magnetic Wheeled Pipeline Robot”, IEEE Access, 10 (2022), 67168–67180
[55] Transeth, A. A., Modelling and Control of Snake Robots, PhD Thesis, Norwegian Univ. of Science and Technology, Trondheim, 2008, 192 pp.
[56] Tanaka, M. and Matsuno, F., “Modeling and Control of Head Raising Snake Robots by Using Kinematic Redundancy”, J. Intell. Robot. Syst., 75:1 (2014), 53–69
[57] Crespi, A., Badertscher, A., Guignard, A., and Ijspeert, A. J., “AmphiBot I: An Amphibious Snake-Like Robot”, Robot. Auton. Syst., 50:4 (2005), 163–175
[58] Liljebäck, P., Pettersen, K. Y., Stavdahl, Ø., and Gravdahl, J. T., “A Review on Modelling, Implementation, and Control of Snake Robots”, Robot. Auton. Syst., 60:1 (2012), 29–40
[59] Itani, O. and Shammas, E., “Motion Planning for Redundant Multi-Bodied Planar Kinematic Snake Robots”, Nonlinear Dyn., 104:4 (2021), 3845–3860
[60] Lipták, T., Virgala, I., Frankovský, P., Šarga, P., Gmiterko, A., and Baločková, L., “A Geometric Approach to Modeling of Four- and Five-Link Planar Snake-Like Robot”, Int. J. Adv. Robot. Syst., 13:5 (2016), 9 pp.
[61] Artemova, E. M. and Kilin, A. A., “An Integrable Case in the Dynamics of a Three-Link Vehicle”, Internat. Conf. “Nonlinearity, Information and Robotics” (Innopolis, Russia, Dec 2020), 6 pp.
[62] Bolzern, P., DeSantis, R., Locatelli, A., and Togno, S., “Dynamic Model of a Two-Trailer Articulated Vehicle Subject to Nonholonomic Constraints”, Robotica, 14:4 (1996), 445–450
[63] Dear, T., Buchanan, B., Abrajan-Guerrero, R., Kelly, S. D., Travers, M., and Choset, H., “Locomotion of a Multi-Link Non-Holonomic Snake Robot with Passive Joints”, Int. J. Robot. Res., 39:5 (2020), 598–616
[64] Bravo-Doddoli, A. and García-Naranjo, L. C., “The Dynamics of an Articulated $n$-Trailer Vehicle”, Regul. Chaotic Dyn., 20:5 (2015), 497–517
[65] Dear, T., Kelly, S. D., Travers, M., and Choset, H., “Locomotion of a Multi-Link Nonholonomic Snake Robot”, Proc. of the ASME 2017 Dynamic Systems and Control Conference (Tysons, Va, Oct 2017), v. 2, DSCC2017-5349, V002T21A011, 10 \enlargethispage*{\baselineskip} pp.
[66] Shammas, E. A., Choset, H., and Rizzi, A. A., “Geometric Motion Planning Analysis for Two Classes of Underactuated Mechanical Systems”, Int. J. Robot. Res., 26:10 (2007), 1043–1073
[67] Surov, M., Gusev, S., and Freidovich, L., “Constructing Transverse Coordinates for Orbital Stabilization of Periodic Trajectories”, ACC'2020: American Control Conference (Denver, Colo., July 2020), 836–841 \goodbreak
[68] Mashtakov A. P., “Algorithms and Software Solving a Motion Planning Problem for Nonholonomic Five-dimensional Control Systems”, Program Systems: Theory and Applications, 3:1 (2012), 3–29 (Russian)
[69] Dear, T., Kelly, S. D., Travers, M., and Choset, H., “Locomotive Analysis of a Single-Input Three-Link Snake Robot”, Proc. of the IEEE 55th Conf. on Decision and Control (Las Vegas, Nev., Dec 2016), 7542–7547
[70] Nansai, S., Iwase, M., and Itoh, H., “Generalized Singularity Analysis of Snake-Like Robot”, Appl. Sci., 8:10 (2018), 1873, 22 pp.
[71] Tanaka, M. and Tanaka, K., “Singularity Analysis of a Snake Robot and an Articulated Mobile Robot with Unconstrained Links”, IEEE Trans. Control Syst. Technol., 24:6 (2016), 2070–2081
[72] Yona, T. and Or, Y., “The Wheeled Three-Link Snake Model: Singularities in Nonholonomic Constraints and Stick-Slip Hybrid Dynamics Induced by Coulomb Friction”, Nonlinear Dyn., 95:3 (2019), 2307–2324
[73] Dear, T., Kelly, S. D., Travers, M., and Choset, H., “The Three-Link Nonholonomic Snake As a Hybrid Kinodynamic System”, ACC'2016: American Control Conference (Boston, Mass., July 2016), 7269–7274
[74] Rashevsky, P. K., “Any Two Points of a Totally Nonholonomic Space May Be Connected by an Admissible Line”, Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math., 3:2 (1938), 83–94 (Russian)
[75] Takagi, Y., Sueoka, Y., Ishikawa, M., and Osuka, K., “Analysis and Control of a Snake-Like Robot with Controllable Side-Thrust Links”, Proc. of the 11th Asian Control Conf. (ASCC, Gold Coast, QLD, Australia, Dec 2017), 754–759
[76] Hrdina, J., Návrat, A., and Vašík, P., “Control of 3-Link Robotic Snake Based on Conformal Geometric Algebra”, Adv. Appl. Clifford Algebras, 26:3 (2016), 1069–1080
[77] Tilbury, D., Murray, R. M., and Sastry, S. Sh., “Trajectory Generation for the $n$-Trailer Problem Using Goursat Normal Form”, IEEE Trans. Automat. Control, 40:5 (1995), 802–819