Approximate Weak Solutions to the Vorticity Evolution
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 3, pp. 423-439

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the equation for the evolution of vorticity in a viscous incompressible fluid, for which approximate weak solutions are sought in the class of vortex filaments. In accordance with the Helmholtz theorem, a system of vortex filaments that is transferred by the flow of an ideal barotropic fluid is an exact solution to the Euler equation. At the same time, for viscous incompressible flows described by the system of Navier – Stokes equations, the search for such generalized solutions in the finite time interval is generally difficult. In this paper, we propose a method for transforming the diffusion term in the vorticity evolution equation that makes it possible to construct its approximate solution in the class of vortex filaments under the assumption that there is no helicity of vorticity. Such an approach is useful in constructing vortex methods of computational hydrodynamics to model viscous incompressible flows.
Keywords: weak solution, helicity of vorticity, diffusion velocity, viscosity.
Mots-clés : vortex filament
@article{ND_2022_18_3_a7,
     author = {O. S. Kotsur and G. A. Shcheglov and I. K. Marchevsky},
     title = {Approximate {Weak} {Solutions} to the {Vorticity} {Evolution}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {423--439},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_3_a7/}
}
TY  - JOUR
AU  - O. S. Kotsur
AU  - G. A. Shcheglov
AU  - I. K. Marchevsky
TI  - Approximate Weak Solutions to the Vorticity Evolution
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 423
EP  - 439
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_3_a7/
LA  - en
ID  - ND_2022_18_3_a7
ER  - 
%0 Journal Article
%A O. S. Kotsur
%A G. A. Shcheglov
%A I. K. Marchevsky
%T Approximate Weak Solutions to the Vorticity Evolution
%J Russian journal of nonlinear dynamics
%D 2022
%P 423-439
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_3_a7/
%G en
%F ND_2022_18_3_a7
O. S. Kotsur; G. A. Shcheglov; I. K. Marchevsky. Approximate Weak Solutions to the Vorticity Evolution. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 3, pp. 423-439. http://geodesic.mathdoc.fr/item/ND_2022_18_3_a7/