Approximate Weak Solutions to the Vorticity Evolution
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 3, pp. 423-439.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the equation for the evolution of vorticity in a viscous incompressible fluid, for which approximate weak solutions are sought in the class of vortex filaments. In accordance with the Helmholtz theorem, a system of vortex filaments that is transferred by the flow of an ideal barotropic fluid is an exact solution to the Euler equation. At the same time, for viscous incompressible flows described by the system of Navier – Stokes equations, the search for such generalized solutions in the finite time interval is generally difficult. In this paper, we propose a method for transforming the diffusion term in the vorticity evolution equation that makes it possible to construct its approximate solution in the class of vortex filaments under the assumption that there is no helicity of vorticity. Such an approach is useful in constructing vortex methods of computational hydrodynamics to model viscous incompressible flows.
Keywords: weak solution, helicity of vorticity, diffusion velocity, viscosity.
Mots-clés : vortex filament
@article{ND_2022_18_3_a7,
     author = {O. S. Kotsur and G. A. Shcheglov and I. K. Marchevsky},
     title = {Approximate {Weak} {Solutions} to the {Vorticity} {Evolution}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {423--439},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_3_a7/}
}
TY  - JOUR
AU  - O. S. Kotsur
AU  - G. A. Shcheglov
AU  - I. K. Marchevsky
TI  - Approximate Weak Solutions to the Vorticity Evolution
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 423
EP  - 439
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_3_a7/
LA  - en
ID  - ND_2022_18_3_a7
ER  - 
%0 Journal Article
%A O. S. Kotsur
%A G. A. Shcheglov
%A I. K. Marchevsky
%T Approximate Weak Solutions to the Vorticity Evolution
%J Russian journal of nonlinear dynamics
%D 2022
%P 423-439
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_3_a7/
%G en
%F ND_2022_18_3_a7
O. S. Kotsur; G. A. Shcheglov; I. K. Marchevsky. Approximate Weak Solutions to the Vorticity Evolution. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 3, pp. 423-439. http://geodesic.mathdoc.fr/item/ND_2022_18_3_a7/

[1] Shariff, K. and Leonard, A., “Vortex Rings”, Annu. Rev. Fluid Mech., 24 (1992), 235–279 | DOI | MR | Zbl

[2] Kaskov, S. I., “Calculation and Experimental Study of Heat Exchange in a System of Plane-Parallel Channels with Surface Intensifiers”, Russian J. Nonlinear Dyn., 17:2 (2021), 211–220 | Zbl

[3] Dergachev, S. A., Marchevsky, I. K., and Shcheglov, G. A., “Flow Simulation around 3D Bodies by Using Lagrangian Vortex Loops Method with Boundary Condition Satisfaction with Respect to Tangential Velocity Components”, Aerosp. Sci. Technol., 94 (2019), 105374 | DOI

[4] Cottet, G.-H. and Koumoutsakos, P. D., Vortex Methods: Theory and Practice, Cambridge Univ. Press, Cambridge, 2000, xiii+313 pp. | MR

[5] Marchevsky, I. and Shcheglov, G., “3D Vortex Structures Dynamics Simulation Using Vortex Fragmentons”, European Congress on Computational Methodsin Applied Sciences and Engineering (ECCOMAS, Vienna, Austria, Sept 2012), eds. J. Eberhardsteiner et. al., 5716–5735

[6] Winckelmans, G. S., “Vortex Methods”, Encyclopedia of Computational Mechanics: In 6 Vols., v. 5, Fluids: Pt. 1, 2nd ed., eds. E. Stein, R. de Borst, Th. J. R. Hughes, Wiley, Hoboken, N.J., 2017, 415–438 | MR

[7] Alkemade, A. J. Q., On Vortex Atoms and Vortons, PhD Thesis, Delft University of Technology, Delft, Netherlands, 1994, 209 pp.

[8] Leonard, A., “Vortex Methods for Flow Simulation”, J. Comput. Phys., 37:3 (1980), 289–335 | DOI | MR | Zbl

[9] Sarpkaya, T., “Computational Methods with Vortices — The 1988 Freeman Scholar Lecture”, J. Fluids Eng. Trans. ASME, 111:1 (1989), 5–52 | DOI

[10] Mimeau, Ch. and Mortazavi, I., “A Review of Vortex Methods and Their Applications: From Creation to Recent Advances”, Fluids, MDPI, 6:2 (2021), 68, 49 pp. | DOI

[11] Dynnikov, Ya. and Dynnikova, G., “Application of Viscous Vortex Domains Method for Solving Flow-Structure Problems”, Proc. of the ECCOMAS Thematic Conf. on Multibody Dynamics (Zagreb, Croatia, 2013), 877–882

[12] Kuzmina, K. S., Marchevsky, I. K., and Ryatina, E. P., “Open Source Code for 2D Incompressible Flow Simulation by Using Meshless Lagrangian Vortex Methods”, Proc. of the Ivannikov ISPRAS Open Conference (Moscow, Russia, 2017), 97–103

[13] Leonard, A., “Numerical Simulation of Interacting Three-Dimensional Vortex Filaments”, Proc. of the 4th Internat. Conf. on Numerical Methods in Fluid Dynamics (University of Colorado, Boulder, CO, 1974), Lecture Notes in Phys., 35, ed. R. D. Richtmyer, Springer, Berlin, 1975, 245–250 | DOI | MR

[14] Vladimirov, V. S., Generalized Functions in Mathematical Physics, Mir, Moscow, 1979, 362 pp. | MR | Zbl

[15] Loitsyanskii, L. G., Mechanics of Liquids and Gases, International Series of Monographs in Aeronautics and Astronautics, Division 2: Aerodynamics, 6, Pergamon, Oxford, 1966, XII + 804 pp. | MR

[16] Saffman, P. G., Vortex Dynamics, Cambridge Monogr. Mech. Appl. Math., Cambridge Univ. Press, New York, 1992, xii+311 pp. | MR | Zbl

[17] Wu, J.-Z., Ma, H.-Y., and Zhou, M.-D., Vorticity and Vortex Dynamics, Springer, Berlin, 2006, 790 pp.

[18] Milne-Thomson, L. M., Theoretical Hydrodynamics, 5th ed., Macmillan, New York, 1968, xxii, 743 pp. | MR | Zbl

[19] Kotsur, O. S., “On the Existence of Local Formulae of the Transfer Velocity of Local Tubes That Conserve Their Strengths”, Trudy MPhTI, 11 (2019), 76–85 (Russian)

[20] Kochin, N. E., Kibel, I. A., and Roze, N. V., Theoretical Hydrodynamics, Wiley, New York, 1964, 583 pp. | MR

[21] Uch. Zapiski TsAGI, 46:3 (2015), 14–20 (Russian) | DOI

[22] Markov, V. V. and Sizykh, G. B., “Vorticity Evolution in Liquids and Gases”, Fluid Dyn., 50:2 (2015), 186–192 | DOI | MR | Zbl

[23] Ogami, Y. and Akamatsu, T., “Viscous Flow Simulation Using the Discrete Vortex Model: The Diffusion Velocity Method”, Comput. Fluids, 19:3–4 (1991), 433–441 | DOI | Zbl

[24] Kuzmina, K., Marchevsky, I., and Ryatina, E., “Numerical Simulation in 2D Strongly Coupled FSI Problems for Incompressible Flows by Using Vortex Method”, AIP Conf. Proc., 2017:1 (2018), 040045, 9 pp. | DOI

[25] Eldredge, J., Leonard, A., and Colonius, T., “A General Deterministic Treatment of Derivatives in Particle Methods”, J. Comput. Phys., 180:2 (2002), 686–709 | DOI | Zbl

[26] Zh. Vychisl. Mat. Mat. Fiz., 60:2 (2020), 297–322 (Russian) | DOI | MR | Zbl

[27] Kotsur, O. S., “Mathematical Modelling of the Elliptical Vortex Ring in a Viscous Fluid with the Vortex Filament Method”, Matem. Matem. Model., 2021, no. 3, 46–61 (Russian) | DOI | MR