Nonlinear Effects of Krypton Flow in a Micronozzle
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 3, pp. 411-422.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers krypton flow in a micronozzle with a cylindrical tube. A standardized conical nozzle elongated with cylindrical portion performs gas discharge into a vacuum chamber at a pressure of $10^{-2}$ Pa. Under such conditions, a low temperature area is formed in the central part of the jet with gas condensation. The particles are entrained by the gas flow. The portion with a constant section behind the nozzle should focus the supersonic flow part and the condensed particle flow and also decrease particle dispersion behind the nozzle throat. The paper expresses a mathematical model of homogeneous gas motion with respect to formation processes and the growth of condensation nuclei. Since the condensed particles are small, the research is carried out with a single velocity motion model. The results obtained have shown that the application of the cylindrical tube leads to nonlinear flow effects. The flow responds to: the geometrical exposure related to flow transition from the conical diverging nozzle into the cylindrical tube, heat exposure and mass outflow due to particle formation and growth, and considerable friction force exposure due to the small sizes of the channel. The sum total ofthese factors leads to an insignificant deceleration of the supersonic flow part and highly impacts condensation.
Keywords: micronozzle, krypton, Navier – Stokes equations, condensed phase, numerical modeling.
@article{ND_2022_18_3_a6,
     author = {M. A. Korepanov and M. R. Koroleva and E. A. Mitrukova and A. N. Nechay},
     title = {Nonlinear {Effects} of {Krypton} {Flow} in a {Micronozzle}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {411--422},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_3_a6/}
}
TY  - JOUR
AU  - M. A. Korepanov
AU  - M. R. Koroleva
AU  - E. A. Mitrukova
AU  - A. N. Nechay
TI  - Nonlinear Effects of Krypton Flow in a Micronozzle
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 411
EP  - 422
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_3_a6/
LA  - en
ID  - ND_2022_18_3_a6
ER  - 
%0 Journal Article
%A M. A. Korepanov
%A M. R. Koroleva
%A E. A. Mitrukova
%A A. N. Nechay
%T Nonlinear Effects of Krypton Flow in a Micronozzle
%J Russian journal of nonlinear dynamics
%D 2022
%P 411-422
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_3_a6/
%G en
%F ND_2022_18_3_a6
M. A. Korepanov; M. R. Koroleva; E. A. Mitrukova; A. N. Nechay. Nonlinear Effects of Krypton Flow in a Micronozzle. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 3, pp. 411-422. http://geodesic.mathdoc.fr/item/ND_2022_18_3_a6/

[1] Banuti, D. T., Grabe, M., and Hannemann, K., “Flow Characteristics of Monopropellant Microscale Planar Nozzles”, Aerosp. Sci. Technol., 86 (2019), 341–350 | DOI

[2] Chernova, A. A., “Validation of RANS Turbulence Models for the Conjugate Heat Exchange Problem”, Russian J. Nonlinear Dyn., 18:1 (2022), 61–82 | MR

[3] Pis'ma Zh. Tekh. Fiz., 34:23 (2008), 87–96 (Russian) | DOI

[4] Ferreira, A. G. M. and Lobo, L. Q., “The Sublimation of Argon, Krypton, and Xenon”, J. Chem. Thermodyn., 40:12 (2008), 1621–1626 | DOI

[5] Zh. Tekh. Fiz., 81:6 (2011), 20–19 (Russian) | DOI

[6] Teplofiz. Aeromekh., 22:6 (2015), 751–760 | DOI

[7] Gnatchenko, E. V., Nechay, A. N., Samovarov, V. N., and Tkachenko, A. A., “Polarization Bremsstrahlung from Xenon Atoms and Clusters: A Cooperative Effect Contribution”, Phys. Rev. A, 82:1 (2010), 012702, 6 pp. | DOI

[8] Han, S., Dai, X., Loy, Ph., Lovaasen, J., Huether, J., Hoey, J. M., Wagner, A., Sandstrom, J., Bunzow, D., Swenson, O. F., Akhatov, I. S., and Schulz, D. L., “Printed Silicon As Diode and FET Materials: Preliminary Results”, J. Non-Cryst. Solids, 354:19–25 (2008), 2623–2626 | DOI

[9] Kolomentsev, A. I. and Yakutin, A. V., “Research of Working Processes in MEMS Based Liquid Microthruster”, Vestn. MAI, 17:4 (2010), 90–95 (Russian)

[10] Korepanov, M. A., Alies, M. Yu., and Mitryukova, E. A., “Numerical Simulation of Homogeneous Condensation of Argon in a Supersonic Nozzle”, Khim. Fiz. Mezoskop., 23:2 (2021), 145–153 (Russian) | MR

[11] Korepanov, M. A., Koroleva, M. R., and Mitrukova, E. A., “Numerical Investigation of Flows with Condenation in Micronozzles”, J. Phys.: Conf. Ser., 2057:1 (2021), 012016, 6 pp. | DOI | MR

[12] Koryakina, I. G., Afonicheva, P. K., Arabuli, K. V., Evstrapov, A. A., Timin, A. S., and Zyuzin, M. V., “Microfluidic Synthesis of Optically Responsive Materials for Nano- and Biophotonics”, Adv. Colloid Interface Sci., 298 (2021), 102548 | DOI

[13] Kudryavtsev, A., Shershnev, A., and Rybdylova, O., “Numerical Simulation of Aerodynamic Focusing of Particles in Supersonic Micronozzles”, Int. J. Multiph. Flow, 114 (2019), 207–218 | DOI | MR

[14] Kvantovaya Elektronika, 36:6 (2006), 549–552 | DOI

[15] Nechay, A. N., Perekalov, A. A., Chkhalo, N. I., Salashchenko, N. N., Korepanov, M. A., and Koroleva, M. R., “Emission Properties of Targets Based on Shock Waves Excited by Pulsed Laser Radiation”, Opt. Laser Technol., 142 (2021), 107250 | DOI

[16] Otschkov, V. F., Piskotin, S. A., Loskutova, T. M., and Gibadullin, I. A., Thermodynamic Properties of Individual Substances: In 6 Vols., , 1978–2004 http://twt.mpei.ac.ru/TTHB/2/OIVT/IVTANThermo/Rus/index.htm

[17] Ovchinnikov, B. M., Perov, A. Yu., and Sazonova, E. A., Methods of Krypton Therapy for Various Disorders of Cerebral Circulation, Preprint No. 1232, INR RAS, Moscow, 2009

[18] Reid, R. C., Reid, R. D., Prausnitz, J. M., and Sherwood, T. K., The Properties of Gases and Liquids, 3rd ed., McGraw-Hill, New York, 1977, 688 pp.

[19] Versteeg, H. K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed., Pearson, New York, 2007, 520 pp.

[20] Pis'ma Zh. Tekh. Fiz., 39:21 (2013), 30–36 (Russian) | DOI

[21] San, O., Bayraktar, I., and Bayraktar, T., “Size and Expansion Ratio Analysis of Micro Nozzle Gas Flow”, Int. Commun. Heat Mass Transf., 36:5 (2009), 402–411 | DOI

[22] Singh, Sh. K. and Arun, K. R., “A Parametric Study on the Fluid Dynamics and Performance Characteristic of Micronozzle Flows”, J. Fluids Eng. Trans. ASME, 144:3 (2022), 031208, 9 pp. | DOI