Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_3_a6, author = {M. A. Korepanov and M. R. Koroleva and E. A. Mitrukova and A. N. Nechay}, title = {Nonlinear {Effects} of {Krypton} {Flow} in a {Micronozzle}}, journal = {Russian journal of nonlinear dynamics}, pages = {411--422}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_3_a6/} }
TY - JOUR AU - M. A. Korepanov AU - M. R. Koroleva AU - E. A. Mitrukova AU - A. N. Nechay TI - Nonlinear Effects of Krypton Flow in a Micronozzle JO - Russian journal of nonlinear dynamics PY - 2022 SP - 411 EP - 422 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2022_18_3_a6/ LA - en ID - ND_2022_18_3_a6 ER -
%0 Journal Article %A M. A. Korepanov %A M. R. Koroleva %A E. A. Mitrukova %A A. N. Nechay %T Nonlinear Effects of Krypton Flow in a Micronozzle %J Russian journal of nonlinear dynamics %D 2022 %P 411-422 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2022_18_3_a6/ %G en %F ND_2022_18_3_a6
M. A. Korepanov; M. R. Koroleva; E. A. Mitrukova; A. N. Nechay. Nonlinear Effects of Krypton Flow in a Micronozzle. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 3, pp. 411-422. http://geodesic.mathdoc.fr/item/ND_2022_18_3_a6/
[1] Banuti, D. T., Grabe, M., and Hannemann, K., “Flow Characteristics of Monopropellant Microscale Planar Nozzles”, Aerosp. Sci. Technol., 86 (2019), 341–350 | DOI
[2] Chernova, A. A., “Validation of RANS Turbulence Models for the Conjugate Heat Exchange Problem”, Russian J. Nonlinear Dyn., 18:1 (2022), 61–82 | MR
[3] Pis'ma Zh. Tekh. Fiz., 34:23 (2008), 87–96 (Russian) | DOI
[4] Ferreira, A. G. M. and Lobo, L. Q., “The Sublimation of Argon, Krypton, and Xenon”, J. Chem. Thermodyn., 40:12 (2008), 1621–1626 | DOI
[5] Zh. Tekh. Fiz., 81:6 (2011), 20–19 (Russian) | DOI
[6] Teplofiz. Aeromekh., 22:6 (2015), 751–760 | DOI
[7] Gnatchenko, E. V., Nechay, A. N., Samovarov, V. N., and Tkachenko, A. A., “Polarization Bremsstrahlung from Xenon Atoms and Clusters: A Cooperative Effect Contribution”, Phys. Rev. A, 82:1 (2010), 012702, 6 pp. | DOI
[8] Han, S., Dai, X., Loy, Ph., Lovaasen, J., Huether, J., Hoey, J. M., Wagner, A., Sandstrom, J., Bunzow, D., Swenson, O. F., Akhatov, I. S., and Schulz, D. L., “Printed Silicon As Diode and FET Materials: Preliminary Results”, J. Non-Cryst. Solids, 354:19–25 (2008), 2623–2626 | DOI
[9] Kolomentsev, A. I. and Yakutin, A. V., “Research of Working Processes in MEMS Based Liquid Microthruster”, Vestn. MAI, 17:4 (2010), 90–95 (Russian)
[10] Korepanov, M. A., Alies, M. Yu., and Mitryukova, E. A., “Numerical Simulation of Homogeneous Condensation of Argon in a Supersonic Nozzle”, Khim. Fiz. Mezoskop., 23:2 (2021), 145–153 (Russian) | MR
[11] Korepanov, M. A., Koroleva, M. R., and Mitrukova, E. A., “Numerical Investigation of Flows with Condenation in Micronozzles”, J. Phys.: Conf. Ser., 2057:1 (2021), 012016, 6 pp. | DOI | MR
[12] Koryakina, I. G., Afonicheva, P. K., Arabuli, K. V., Evstrapov, A. A., Timin, A. S., and Zyuzin, M. V., “Microfluidic Synthesis of Optically Responsive Materials for Nano- and Biophotonics”, Adv. Colloid Interface Sci., 298 (2021), 102548 | DOI
[13] Kudryavtsev, A., Shershnev, A., and Rybdylova, O., “Numerical Simulation of Aerodynamic Focusing of Particles in Supersonic Micronozzles”, Int. J. Multiph. Flow, 114 (2019), 207–218 | DOI | MR
[14] Kvantovaya Elektronika, 36:6 (2006), 549–552 | DOI
[15] Nechay, A. N., Perekalov, A. A., Chkhalo, N. I., Salashchenko, N. N., Korepanov, M. A., and Koroleva, M. R., “Emission Properties of Targets Based on Shock Waves Excited by Pulsed Laser Radiation”, Opt. Laser Technol., 142 (2021), 107250 | DOI
[16] Otschkov, V. F., Piskotin, S. A., Loskutova, T. M., and Gibadullin, I. A., Thermodynamic Properties of Individual Substances: In 6 Vols., , 1978–2004 http://twt.mpei.ac.ru/TTHB/2/OIVT/IVTANThermo/Rus/index.htm
[17] Ovchinnikov, B. M., Perov, A. Yu., and Sazonova, E. A., Methods of Krypton Therapy for Various Disorders of Cerebral Circulation, Preprint No. 1232, INR RAS, Moscow, 2009
[18] Reid, R. C., Reid, R. D., Prausnitz, J. M., and Sherwood, T. K., The Properties of Gases and Liquids, 3rd ed., McGraw-Hill, New York, 1977, 688 pp.
[19] Versteeg, H. K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed., Pearson, New York, 2007, 520 pp.
[20] Pis'ma Zh. Tekh. Fiz., 39:21 (2013), 30–36 (Russian) | DOI
[21] San, O., Bayraktar, I., and Bayraktar, T., “Size and Expansion Ratio Analysis of Micro Nozzle Gas Flow”, Int. Commun. Heat Mass Transf., 36:5 (2009), 402–411 | DOI
[22] Singh, Sh. K. and Arun, K. R., “A Parametric Study on the Fluid Dynamics and Performance Characteristic of Micronozzle Flows”, J. Fluids Eng. Trans. ASME, 144:3 (2022), 031208, 9 pp. | DOI