Direct Numerical Simulation of Fully Developed
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 3, pp. 379-395.

Voir la notice de l'article provenant de la source Math-Net.Ru

Direct numerical simulation of a fully developed turbulent flow of a viscous compressible fluid containing spherical solid particles in a channel is carried out. The formation of regions with an increased concentration of solid particles in a fully developed turbulent flow in a channel with solid walls is considered. The fluid flow is simulated with unsteady three-dimensional Navier – Stokes equations. The discrete trajectory approach is applied to simulate the motion of particles. The distributions of the mean and fluctuating characteristics of the fluid flow and distribution of the concentration of the dispersed phase in the channel are discussed. The formation of regions with an increased concentration of particles is associated with the instantaneous distribution of vorticity in the near-wall region of the channel. The results of numerical simulation are in qualitative and quantitative agreement with the available data of physical and computational experiments.
Keywords: Navier – Stokes equation, direct numerical simulation, duct
Mots-clés : turbulence, particle, concentration.
@article{ND_2022_18_3_a4,
     author = {V. N. Emelyanov and K. N. Volkov},
     title = {Direct {Numerical} {Simulation} of {Fully} {Developed}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {379--395},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_3_a4/}
}
TY  - JOUR
AU  - V. N. Emelyanov
AU  - K. N. Volkov
TI  - Direct Numerical Simulation of Fully Developed
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 379
EP  - 395
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_3_a4/
LA  - en
ID  - ND_2022_18_3_a4
ER  - 
%0 Journal Article
%A V. N. Emelyanov
%A K. N. Volkov
%T Direct Numerical Simulation of Fully Developed
%J Russian journal of nonlinear dynamics
%D 2022
%P 379-395
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_3_a4/
%G en
%F ND_2022_18_3_a4
V. N. Emelyanov; K. N. Volkov. Direct Numerical Simulation of Fully Developed. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 3, pp. 379-395. http://geodesic.mathdoc.fr/item/ND_2022_18_3_a4/

[1] Volkov, K. N. and Emel'yanov, V. N., Large Eddy Simulation in Calculations of Turbulent Flows, Fizmatlit, Moscow, 2008, 364 pp. (Russian)

[2] Volkov, K. N. and Emel'yanov, V. N., Gas Flow with Particles, Fizmatlit, Moscow, 2008, 598 pp. (Russian)

[3] Varaksin, A. Yu., Turbulent Particle-Laden Gas Flows, Springer, Berlin, 2007, 194 pp.

[4] Kuerten, J. G. M., “Point-Particle DNS and LES of Particle-Laden Turbulent Flow: A State-of-the-Art Review”, Flow Turbulence Combust., 97:3 (2016), 689–713 | DOI

[5] Osiptsov, A. N., “Lagrangian Modelling of Dust Admixture in Gas Flows”, Astrophys. Space Sci., 274:1–2 (2000), 377, 10 pp. | DOI | Zbl

[6] Wilkinson, M. and Mehlig, B., “Caustics in Turbulent Aerosols”, Europhys. Lett., 71:2 (2005), 186–192 | DOI | MR

[7] Gustavsson, K. and Mehlig, B., “Ergodic and Non-Ergodic Clustering of Inertial Particles”, Europhys. Lett., 96:6 (2011), 60012, 6 pp. | DOI

[8] Gustavsson, K., Meneguz, E., Reeks, M., and Mehlig, B., “Inertial-Particle Dynamics in Turbulent Flows: Caustics, Concentration Fluctuations and Random Uncorrelated Motion”, New J. Phys., 14:11 (2012), 115017, 8 pp. | DOI

[9] Squires, K. D. and Eaton, J. K., “Measurements of Particle Dispersion Obtained from Direct Numerical Simulations of Isotropic Turbulence”, J. Fluid Mech., 226 (1991), 1–35 | DOI

[10] Zaichik, L. I. and Alipchenkov, V. M., Statistical Models of Movement of Particles in a Turbulent Liquid, Fizmatlit, Moscow, 2007, 312 pp. (Russian)

[11] Teplofiz. Vys. Temp., 52:5 (2014), 777–796 (Russian) | DOI

[12] Dorgan, A. J. and Loth, E., “Simulation of Particles Released near the Wall in a Turbulent Boundary Layer”, Int. J. Multiph. Flow, 30:6 (2004), 649–673 | DOI | Zbl

[13] Pozorski, J., Apte, S. V., and Eaman, V., “Filterd Particle Tracking for Dispersed Two-Phase Turbulent Flows”, Proc. of the 2004 Summer Program (Stanford University, Center for Turbulence Research), 329–340

[14] Winkler, C. M., Rani, S. L., and Vanka, S. P., “Preferential Concentration of Particles in a Fully Developed Turbulent Square Duct Flow”, Int. J. Multiph. Flow, 30:1 (2004), 27–50 | DOI | Zbl

[15] Fistler, M., Kerstein, A., Wunsch, S., and Oevermann, M., “Turbulence Modulation in Particle-Laden Stationary Homogeneous Shear Turbulence Using One-Dimensional Turbulence”, Phys. Rev. Fluids, 5:12 (2020), 124303, 28 pp. | DOI

[16] Germes Martinez, L., Duret, B., Reveillon, J., and Demoulin, F. X., “A New DNS Formalism Dedicated to Turbulent Two-Phase Flows with Phase Change”, Int. J. Multiph. Flow, 143 (2021), 103762, 49 pp. | DOI | MR

[17] Teplofiz. Vys. Temp., 45:1 (2007), 66–76 (Russian) | DOI

[18] Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza, 2006, no. 4, 50–65 (Russian) | DOI | MR | Zbl

[19] Armenio, V., Piomelli, U., and Fiorotto, V., “Effect of the Subgrid Scales on Particle Motion”, Phys. Fluids, 11:10 (1999), 3030–3042 | DOI | Zbl

[20] Giscquel, L. Y. M., Givi, P., Jaberi, F. A., and Pope, S. B., “Velocity Filtered Density Function for Large-Eddy Simulation of Turbulent Flows”, Phys. Fluids, 14:3 (2002), 1196–1213 | DOI | MR

[21] Portela, L. M. and Oliemans, R. V. A., “Eulerian-Lagrangian DNS/LES of Particle-Turbulence Interactions in Wall-Bounded Flows”, Int. J. Numer. Methods Fluids, 43:9 (2003), 1045–1065 | DOI | MR | Zbl

[22] Homann, H. and Bec, J., “Concentrations of Inertial Particles in the Turbulent Wake of an Immobile Sphere”, Phys. Fluids, 27:5 (2015), 053301, 9 pp. | DOI

[23] Fukagata, K., Zahrai, S., Kondo, S., and Bark, F. H., “Anomalous Velocity Fluctuations in Particulate Turbulent Channel Flow”, Int. J. Multiph. Flow, 27:4 (2001), 701–719 | DOI | Zbl

[24] Sommerfeld, M. and Huber, N., “Experimental Analysis and Modelling of Particle-Wall Collisions”, Int. J. Multiph. Flow, 25:6–7 (1999), 1457–1489 | DOI | Zbl

[25] Ling, W., Chung, J. N., and Crowe, C. T., “Direct Numerical Simulation of a Two-Way Thermally Coupled Droplet-Laden Mixing Layer”, J. Fluid Mech., 437:1 (2001), 45–68 | DOI | Zbl

[26] Sudharsan, M., Brunton, S. L., and Riley, J. J., “Lagrangian Coherent Structures and Inertial Particle Dynamics”, Phys. Rev. E, 93:3 (2016), 033108, 9 pp. | DOI

[27] Monchaux, R. and Dejoan, A., “Settling Velocity and Preferential Concentration of Heavy Particles under Two-Way Coupling Effects in Homogeneous Turbulence”, Phys. Rev. Fluids, 2:10 (2017), 104302, 16 pp. | DOI

[28] Eckelmann, H., “The Structure of the Viscous Sublayer and the Adjacent Wall Region in a Turbulent Channel Flow”, J. Fluid Mech., 65:3 (1974), 439–459 | DOI

[29] Niederschulte, M., Adrian, R., and Hanratty, T. J., “Measurements of Turbulent Flow in a Channel at Low Reynolds Numbers”, Exp. Fluids, 9:4 (1990), 222–230 | DOI

[30] Kim, J., Moin, P., and Moser, R., “Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number”, J. Fluid Mech., 177 (1987), 133–166 | DOI | Zbl

[31] Jiménez, J. and Moin, P., “The Minimal Flow Unit in Near-Wall Turbulence”, J. Fluid Mech., 225 (1991), 213–240 | DOI | Zbl

[32] Moser, R., Kim, J., and Mansour, N., “Direct Numerical Simulation of Turbulent Channel Flow up to $\text{Re}_\tau^{}=590$”, Phys. Fluids, 11:4 (1999), 943–945 | DOI | Zbl

[33] Prikl. Mekh. Tekhn. Fiz., 47:3 (2006), 31–42 (Russian) | DOI | MR | Zbl

[34] Marchioli, C. and Soldati, A., “Mechanisms for Particle Transfer and Segregation in a Turbulent Boundary Layer”, J. Fluid Mech., 468 (2002), 283–315 | DOI | Zbl

[35] Soldati, A., “Particles Turbulence Interactions in Boundary Layers”, ZAMM Z. Angew. Math. Mech., 85:10 (2005), 683–699 | DOI | MR | Zbl

[36] Wang, Q. and Squires, K. D., “Large Eddy Simulation of Particle-Laden Turbulent Channel Flow”, Phys. Fluids, 8:5 (1996), 1207–1223 | DOI | Zbl

[37] Thomas, J.-F., Direct Numerical Simulation of Two-Phase Turbulent Flows: Project No. 2006-30, Von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, 2006

[38] Raju, N. and Meiburg, E., “Dynamics of Small, Spherical Particles in Vortical and Stagnation Point Flow Fields”, Phys. Fluids, 9:2 (1997), 299–314 | DOI | MR

[39] Ravichandran, S. and Govindarajan, R., “Caustics and Clustering in the Vicinity of a Vortex”, Phys. Fluids, 27:3 (2015), 033305, 13 pp. | DOI

[40] Lasheras, J. and Tio, K.-K., “Dynamics of a Small Spherical Particle in Steady Two-Dimensional Vortex Flows”, Appl. Mech. Rev., 47:6S (1994), S61–S69 | DOI

[41] Lecuona, A., Ruiz-Rivas, U., and Nogueira, J., “Simulation of Particle Trajectories in a Vortex-Induced Flow: Application to Seed-Dependent Flow Measurement Techniques”, Meas. Sci. Technol., 13:7 (2002), 1020–1028 | DOI

[42] Inzh.-Fiz. Zh., 80:2 (2007), 36–45 (Russian) | DOI

[43] Inzh.-Fiz. Zh., 92:1 (2019), 146–154 (Russian) | DOI

[44] Volkov, K. N., “Multigrid and Preconditioning Techniques in CFD Applications”, CFD Techniques and Thermo-Mechanics Applications, eds. Z. Driss, B. Necib, H.-C. Zhang, Springer, Cham, 2018, 83–149 | DOI

[45] Kulikovskii, A. G., Pogorelov, N. V., and Semenov, A. Yu., Mathematical Aspects of Numerical Solution of Hyperbolic Systems, Chapman Hall/CRC, New York, 2001, 560 pp. | MR | Zbl

[46] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd ed., Springer, Berlin, 2009, xxiv+724 pp. | MR | Zbl

[47] Choi, H. and Moin, P., “Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow”, J. Comput. Phys., 113:1 (1994), 1–4 | DOI | Zbl

[48] Haller, G., “An Objective Definition of a Vortex”, J. Fluid Mech., 525 (2005), 1–26 | DOI | MR | Zbl

[49] Schlichting, H., Gersten, K., Krause, E., and Oertel, H., Jr., Grenzschicht-Theorie, 10th ed., Springer, Berlin, 2006, 799 pp. | MR

[50] Waleffe, F. and Kim, J., “How Streamwise Rolls and Streaks Self-Sustain in a Shear Flow: P. 2”, AIAA Paper No. 98-2997, 8 pp.

[51] Willmarth, W. W. and Lu, S. S., “Structure of the Reynolds Stress near the Wall”, J. Fluid Mech., 55 (1972), 65–92 | DOI

[52] Cleaver, J. W. and Yates, B., “A Sublayer Model for the Deposition of Particles from a Turbulent Flow”, Chem. Eng. Sci., 30:8 (1975), 983–992 | DOI