Direct Numerical Simulation of Aerodynamic Flows
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 3, pp. 349-365.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of the theoretical solution of aerodynamic problems based on direct numerical simulation by integrating the Navier – Stokes equations without involving additional models and empirical constants are shown. Modern approaches to the theoretical study of high-speed flows are determined. The advantages, problems, development trends and scientific directions of research on various approaches are revealed. The advantages and disadvantages of the direct numerical simulation are analyzed. The velocity vectors of laminar and transient flows in a rectangular channel with a sudden expansion at the inlet are presented in different planes. The convergence of the method is studied when the computational domain is quantized in space. It is discovered that fast relaminarization is characteristic of transitional flows. A mathematical model for calculating bottom drag is presented. The numerical results are compared with the data of physical experiments and the results of other methods. It is shown that the results of simulation based on DNS are not inferior in accuracy to RANS and LES results. The results of a parametric study of a transonic flow around a profile are presented. The high-speed buffet onset is investigated. The distribution surfaces of the velocity pulsation energy generation are shown. The frequency of self-oscillations is determined on the basis of spectral analysis.
Keywords: direct numerical simulation, Navier – Stokes equations, transient flows, base drag, baffet onset.
@article{ND_2022_18_3_a2,
     author = {A. M. Lipanov and S. A. Karskanov},
     title = {Direct {Numerical} {Simulation} of {Aerodynamic} {Flows}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {349--365},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_3_a2/}
}
TY  - JOUR
AU  - A. M. Lipanov
AU  - S. A. Karskanov
TI  - Direct Numerical Simulation of Aerodynamic Flows
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 349
EP  - 365
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_3_a2/
LA  - en
ID  - ND_2022_18_3_a2
ER  - 
%0 Journal Article
%A A. M. Lipanov
%A S. A. Karskanov
%T Direct Numerical Simulation of Aerodynamic Flows
%J Russian journal of nonlinear dynamics
%D 2022
%P 349-365
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_3_a2/
%G en
%F ND_2022_18_3_a2
A. M. Lipanov; S. A. Karskanov. Direct Numerical Simulation of Aerodynamic Flows. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 3, pp. 349-365. http://geodesic.mathdoc.fr/item/ND_2022_18_3_a2/

[1] Reynolds, O., “An Experimental Investigation of the Circumstances Which Determine whether the Motion of Water Shall Be Direct or Sinuous, and of the Law of Resistance in Parallel Channels”, Philos. Trans. R. Soc. Lond., 174 (1883), 935–982

[2] Reynolds, O., “On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion”, Philos. Trans. R. Soc. Lond., 186 (1895), 123–161 | DOI | MR

[3] Bradshaw, P., An Introduction to Turbulence and Its Measurement, Pergamon, Oxford, 1971, 238 pp. | MR | Zbl

[4] Kochin, N. E., Kibel, I. A., and Roze, N. V., Theoretical Hydrodynamics, Wiley, New York, 1964, 583 pp. | MR

[5] Monin, A. S. and Yaglom, A. M., Statistical Fluid Mechanics: Mechanics of Turbulence, v. 1, MIT Press, Cambridge, Mass., 1987, 769 pp. | MR

[6] Landau, L. D. and Lifshitz, E. M., Course of Theoretical Physics: In 10 Vols., v. 6, Fluid Mechanics, 2nd ed., Butterworth-Heinemann, Oxford, 2003, 552 pp. | MR

[7] Garbaruk, A., Strelets, M. Kh., and Shur, M. L., Turbulence Modeling in Complex Flow Calculations, SPbPU, St. Petersburg, 2012, 88 pp. (Russian)

[8] Spalart, P. R., “RANS Modeling into a Second Century”, Int. J. Comut. Fluid Dyn., 23:4 (2009), 291–293 | DOI | Zbl

[9] Xiao, H. and Cinnella, P., “Quantification of Model Uncertainty in RANS Simulations: A Review”, Prog. Aerosp. Sci., 108 (2019), 1–31 | DOI

[10] Gorman, J., Bhattacharyya, S., Cheng, L., and Abraham, J., “Turbulence Models Commonly Used in CFD”, Computational Fluid Dynamics, ed. S. Bhattacharyya, IntechOpen, London, 2021, 19 pp.

[11] Berselli, L. C., Galdi, G. P., Iliescu, T., and Layton, W. J., “Mathematical Analysis for the Rational Large Eddy Simulation Model”, Math. Models Methods Appl. Sci., 12:8 (2002), 1131–1152 | DOI | MR | Zbl

[12] Spalart, P. R., Jou, W. H., Strelets, M. Kh., and Allmaras, S. R., “Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach”, Advances in DNS/LES: Direct Numerical Simulation and Large Eddy Simulation: Proc. of the 1st AFOSR Internat. Conf. on DND/LES (Ruston, La, 1997), 137–148

[13] Spalart, P. R., “Hybrid RANS-LES Methods”, Advanced Approaches in Turbulence: Theory, Modeling, Simulation, and Data Analysis for Turbulent Flows, ed. P. Durbin, Elsevier, Amsterdam, 2021, 133–159

[14] Acoustic Interactions in Gas Flows, eds. V. N. Emel'yanov, K. N. Volkov, Fizmatlit, Moscow, 2021, 588V pp. (Russian)

[15] Spalart, P. R., “Strategies for Turbulence Modeling and Simulations”, Int. J. Heat Fluid Flow, 21:3 (2000), 252–263 | DOI

[16] Pope, S. B., Turbulent Flows, Cambridge Univ. Press, Cambridge, 2000, xxxiv+771 pp. | MR | Zbl

[17] Menter, F. R., Kuntz, M., and Langtry, R., “Ten Years of Industrial Experience with the SST Turbulence Model”, Turbulence, Heat and Mass Transfer 4: Proc. of the 4th Internat. Symp. on Turbulence, Heat and Mass Transfer (Antalya, Turkey, Oct 2003), eds. K. Hanjalić, Y. Nagano, M. J. Tummers, Begell, New York, 2003, 625–632

[18] Herrin, J. L. and Dutton, J. C., “Supersonic Base Flow Experiments in the Near Wake of a Cylindrical Afterbody”, AIAA J., 32:1 (1994), 77–83 | DOI

[19] Simon, F., Deck, S., and Guillen, P., “Reynolds-Averaged Navier – Stokes/Large-Eddy Simulations of Supersonic Base Flow”, AIAA J., 44:11 (2006), 2578–2590 | DOI

[20] Abdrashitov, G. G., On the Issue of Buffeting the Tail Unit, TsAGI, Moscow, 1939, 42 pp. (Russian); Abdrashitov, G., Tail Buffeting, NACA-TM-1041, Feb 1943, 51 pp.

[21] McDevitt, J. B. and Okuno, A. F., Static and Dynamic Pressure Measurements on a NACA 0012 Airfoil in the Ames High Reynolds Number Facility, NASA-TP-2485, 1985, 78 pp.

[22] Lipanov, A. M., Karskanov, S. A., Chernyshev, S. L., and Lipatov, I. I., “Theoretical Investigation of Conditions for the Appearance of High-Speed Bufting”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:3 (2019), 382–395 (Russian) | DOI | MR

[23] Lipatov, I. I., Fam, T. V., and Prikhod'ko, A. A., “Numerical Simulations of Buffeting Appearence”, Trudy Mosk. Fiz.-Tekhn. Inst., 6:2 (2014), 122–132 (Russian)

[24] Lipanov, A. M., Theoretical Fluid Mechanics of Newtonian Media, Nauka, Moscow, 2011, 552 pp. (Russian)

[25] Izv. Akad. Nauk SSSR Mekh. Zidk. Gaza, 1988, no. 4, 32–41 (Russian) | DOI

[26] Thompson, K. W., “Time-Dependent Boundary Conditions for Hyperbolic Systems: 2”, J. Comput. Phys., 89:2 (1990), 439–461 | DOI | MR | Zbl

[27] Kreiss, H.-O. and Lorenz, J., Initial-Boundary Value Problems and the Navier – Stokes Equations, Pure Appl. Math., 136, Acad. Press, Boston, Mass., 1989, xii+402 pp. | MR | Zbl

[28] Liu, X.-D., Osher, S., and Chan, T., “Weighted Essentially Non-Oscillatory Schemes”, J. Comput. Phys., 115:1 (1994), 200–212 | DOI | MR | Zbl

[29] Gottlieb, S. and Shu, C.-W., “Total Variation Diminishing Runge – Kutta Schemes”, Math. Comp., 67:221 (1998), 73–85 | DOI | MR | Zbl

[30] Zh. Vychisl. Mat. Mat. Fiz., 51:1 (2011), 152–169 (Russian) | DOI | MR | Zbl