Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_3_a1, author = {I. G. Rusyak and V. A. Tenenev and S. A. Korolev}, title = {Numerical {Simulation} of the {Nonstationary} {Process}}, journal = {Russian journal of nonlinear dynamics}, pages = {333--348}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_3_a1/} }
TY - JOUR AU - I. G. Rusyak AU - V. A. Tenenev AU - S. A. Korolev TI - Numerical Simulation of the Nonstationary Process JO - Russian journal of nonlinear dynamics PY - 2022 SP - 333 EP - 348 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2022_18_3_a1/ LA - en ID - ND_2022_18_3_a1 ER -
I. G. Rusyak; V. A. Tenenev; S. A. Korolev. Numerical Simulation of the Nonstationary Process. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 3, pp. 333-348. http://geodesic.mathdoc.fr/item/ND_2022_18_3_a1/
[1] Serebryakov, M. E., Internal Ballistics, Oborongiz, Moscow, 1949, 674 pp. (Russian)
[2] Betekhtin, S. A., Vinitsky, A. M., Gorokhov, M. S., Stanyukovich, K. P., and Fedotov, I. D., Gasdynamic Bases of Internal Ballistics, Oborongiz, Moscow, 1957, 384 pp. (Russian)
[3] Gough, P. S., “Modeling of Two-Phase Flow in Guns”, Interior Ballistics of Guns, Prog. Astronaut. Aeronaut., 66, eds. H. Krier, M. Summerfield, AIAA, New York, 1979, 176–196
[4] Gough, P. S. and Zwarts, F. J., “Modeling Heterogeneous Two-Phase Reacting Flow”, AIAA J., 17:1 (1979), 17–25 | DOI | MR | Zbl
[5] Khomenko, Yu. P., Ischenko, A. N., and Kasimov V. Z., Mathematical Modelling of Interior Ballistic Processes in Barrel Systems, SO RAN, Novosibirsk, 1999, 255 pp. (Russian)
[6] Rusyak, I. G. and Ushakov, V. M., Intrachamber Heterogeneous Processes in Stem Systems, UrO RAN, Ekaterinburg, 2001, 259 pp. (Russian)
[7] Ishchenko, A. N., Kasimov, V. Z., and Ushakova, O. V., “Influence of the Initial Propellant Temperature and Ignition Method on Ballistic Characteristics of a Shot in the Setting of a 120 mm Caliber Model Ballistic Installation”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 70, 37–50 (Russian)
[8] Zh. Vychisl. Mat. Mat. Fiz., 59:9 (2019), 1591–1604 (Russian) | DOI | MR | Zbl
[9] Rusyak, I. G. and Tenenev, V. A., “Modeling of Ballistics of an Artillery Shot Taking into Account the Spatial Distribution of Parameters and Backpressure”, Kompyuternye Issledovaniya i Modelirovanie, 12:5 (2020), 1123–1147 (Russian)
[10] Rusyak, I. G., Lipanov, A. M., and Ushakov, V. M., Physical Bases and Gas Dynamics of Gunpowder Burning in Artillery Systems, R Dynamics, Izhevsk, 2016, 456 pp. (Russian)
[11] Rinaldi, E., Pecnik, R., and Colonna, P., “Exact Jacobians for Implicit Navier – Stokes Simulations of Equilibrium Real Gas Flows”, J. Comput. Phys., 270 (2014), 459–477 | DOI | MR | Zbl
[12] Toro, E. F., Spruce, M., and Speares, W., “Restoration of the Contact Surface in the HLL-Riemann Solver”, Shock Waves, 4:1 (1994), 25–34 | DOI | Zbl
[13] Liou, M. S., “A Sequel to AUSM: AUSM+”, J. Comput. Phys., 129:2 (1996), 364–382 | DOI | MR | Zbl
[14] Kurganov, A. and Tadmor, E., “New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection-Diffusion Equations”, J. Comput. Phys., 160:1 (2000), 241–282 | DOI | MR | Zbl
[15] Toro, E., Castrob, C., and Lee, B., “A Novel Numerical Flux for the 3D Euler Equations with General Equation of State”, J. Comput. Phys., 303 (2015), 80–94 | DOI | MR | Zbl
[16] Godunov, S. K., “A Difference Method for Numerical Calculation of Discontinuous Solutions of the Equations of Hydrodynamics”, Mat. Sb. (N.S.), 47 (89):3 (1959), 271–306 (Russian) | MR | Zbl
[17] Aksenov, A. G., Tishkin, V. F., and Chechetkin, V. M., “Godunov-Type Method and Shafranov's Task for Multi-Temperature Plasma”, Math. Models Comput. Simul., 11:3 (2019), 360–373 | DOI | MR
[18] Miller, G. H. and Puckett, E. G., “A High-Order Godunov Method for Multiple Condensed Phases”, J. Comput. Phys., 128:1 (1996), 134–164 | DOI | Zbl
[19] Guardone, A. and Vigevano, L., “Roe Linearization for the van der Waals Gas”, J. Comput. Phys., 175:1 (2002), 50–78 | DOI | Zbl
[20] Gallouët, T. and Hérard, J.-M., “A New Approximate Godunov Scheme with Application to Dense Gas-Solid Flows”, Proc. of the 17th AIAA Computational Fluid Dynamics Conference (Toronto, Canada, Jun 2005), 14 pp.
[21] Glaister, P., “Riemann Solvers with Primitive Parameter Vectors for Two-Dimensional Compressible Flows of a Real Gas”, Comput. Math. Appl., 37:2 (1999), 75–92 | DOI | MR | Zbl
[22] Prokopov, G. P. and Severin, A. V., Rational Realization of Godunov's Method, Preprint No. 29, Keldysh Institute of Applied Mathematics, Moscow, 2009, 24 pp. (Russian) | MR
[23] Borisov, V. E. and Rykov, Yu. G., An Exact Riemann Solver in the Algorithms for Multicomponent Gas Dynamics, Preprint No. 96, Keldysh Institute of Applied Mathematics, Moscow, 2009, 28 pp. (Russian)
[24] Zh. Vychisl. Mat. Mat. Fiz., 48:6 (2008), 1102–1110 (Russian) | DOI | MR | Zbl
[25] Kulikovskii, A. G., Pogorelov, N. V., and Semenov, A. Yu., “Mathematical Aspects of Numerical Solution of Hyperbolic Systems”, Hyperbolic Problems: Theory, Numerics, Applications, Internat. Schriftenreihe Numer. Math., 130, eds. R. Jeltsch, M. Fey, Birkhäuser, Basel, 1999, 589–598 | MR | Zbl
[26] Raeder, T., Tenenev, V. A., Koroleva, M. R., and Mishchenkova, O. V., “Nonlinear Processes in Safety Systems for Substances with Parameters Close to a Critical State”, Russian J. Nonlinear Dyn., 17:1 (2021), 119–138 | MR | Zbl
[27] Rusyak, I. G. and Tenenev, V. A., “The Impact of the Dimension of a Mathematical Model of Internal Ballistics on Design Parameters of a Shot for Grain Gunpowder Charges”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 73, 95–110 (Russian)
[28] Raeder, T., Tenenev, V. A., and Chernova, A. A., “Numerical Simulation of Unstable Operating Modes of a Safety Valve”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 68, 141–157 (Russian) | MR
[29] Yakhot, V. and Orszag, S. A., “Renormalization-Group Analysis of Turbulence”, Phys. Rev. Lett., 57:14 (1986), 1722–1724 | DOI | MR
[30] Wesseling, P., Segal, A., and Kassel, C. G. M., “Computing Flows on General Three-Dimensional Nonsmooth Staggered Grids”, J. Comput. Phys., 149:2 (1999), 333–362 | DOI | MR | Zbl
[31] Tenenev, V. A., Rusyak, I. G., and Gorohov, M. M., “Numerical Solution of a Combustion Problem for Aluminium Particles in Two-Phase Stream”, Matem. Mod., 9:5 (1997), 87–96
[32] Godunov, S. K., Zabrodin, A. V., Ivanov, M. Ya., Kraiko, A. N., and Prokopov, G. P., Numerical Solution of Multidimensional Problems of Gas Dynamics, Nauka, Moscow, 1976 (Russian) | MR