Numerical Simulation of the Nonstationary Process
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 3, pp. 333-348.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper gives a spatial mathematical formulation of the problem of internal ballistics based on the Navier – Stokes equations, taking into account the swirl of the flow due to the rotation of the projectile. The k-e model of turbulent viscosity is used. The control volume method is used for the numerical solution of systems of equations. The gas parameters at the boundaries of the control volumes are determined by the method of S. K. Godunov using a self-similar solution to the problem of the decay of an arbitrary discontinuity. The MUSCL scheme is used to increase the order of approximation of the difference method. For equations written in a cylindrical coordinate system, an orthogonal difference grid is constructed using the complex boundary element method. A comparative analysis of the results obtained with different approaches to modeling the process of an artillery shot is given. Quantitative data are presented on the influence of factors not previously taken into account on the characteristics of the process.
Keywords: internal ballistics, mathematical model of a shot, mechanics of heterogeneous media, Navier – Stokes equations, axisymmetric swirling flow, computational algorithms.
@article{ND_2022_18_3_a1,
     author = {I. G. Rusyak and V. A. Tenenev and S. A. Korolev},
     title = {Numerical {Simulation} of the {Nonstationary} {Process}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {333--348},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_3_a1/}
}
TY  - JOUR
AU  - I. G. Rusyak
AU  - V. A. Tenenev
AU  - S. A. Korolev
TI  - Numerical Simulation of the Nonstationary Process
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 333
EP  - 348
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_3_a1/
LA  - en
ID  - ND_2022_18_3_a1
ER  - 
%0 Journal Article
%A I. G. Rusyak
%A V. A. Tenenev
%A S. A. Korolev
%T Numerical Simulation of the Nonstationary Process
%J Russian journal of nonlinear dynamics
%D 2022
%P 333-348
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_3_a1/
%G en
%F ND_2022_18_3_a1
I. G. Rusyak; V. A. Tenenev; S. A. Korolev. Numerical Simulation of the Nonstationary Process. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 3, pp. 333-348. http://geodesic.mathdoc.fr/item/ND_2022_18_3_a1/

[1] Serebryakov, M. E., Internal Ballistics, Oborongiz, Moscow, 1949, 674 pp. (Russian)

[2] Betekhtin, S. A., Vinitsky, A. M., Gorokhov, M. S., Stanyukovich, K. P., and Fedotov, I. D., Gasdynamic Bases of Internal Ballistics, Oborongiz, Moscow, 1957, 384 pp. (Russian)

[3] Gough, P. S., “Modeling of Two-Phase Flow in Guns”, Interior Ballistics of Guns, Prog. Astronaut. Aeronaut., 66, eds. H. Krier, M. Summerfield, AIAA, New York, 1979, 176–196

[4] Gough, P. S. and Zwarts, F. J., “Modeling Heterogeneous Two-Phase Reacting Flow”, AIAA J., 17:1 (1979), 17–25 | DOI | MR | Zbl

[5] Khomenko, Yu. P., Ischenko, A. N., and Kasimov V. Z., Mathematical Modelling of Interior Ballistic Processes in Barrel Systems, SO RAN, Novosibirsk, 1999, 255 pp. (Russian)

[6] Rusyak, I. G. and Ushakov, V. M., Intrachamber Heterogeneous Processes in Stem Systems, UrO RAN, Ekaterinburg, 2001, 259 pp. (Russian)

[7] Ishchenko, A. N., Kasimov, V. Z., and Ushakova, O. V., “Influence of the Initial Propellant Temperature and Ignition Method on Ballistic Characteristics of a Shot in the Setting of a 120 mm Caliber Model Ballistic Installation”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 70, 37–50 (Russian)

[8] Zh. Vychisl. Mat. Mat. Fiz., 59:9 (2019), 1591–1604 (Russian) | DOI | MR | Zbl

[9] Rusyak, I. G. and Tenenev, V. A., “Modeling of Ballistics of an Artillery Shot Taking into Account the Spatial Distribution of Parameters and Backpressure”, Kompyuternye Issledovaniya i Modelirovanie, 12:5 (2020), 1123–1147 (Russian)

[10] Rusyak, I. G., Lipanov, A. M., and Ushakov, V. M., Physical Bases and Gas Dynamics of Gunpowder Burning in Artillery Systems, R Dynamics, Izhevsk, 2016, 456 pp. (Russian)

[11] Rinaldi, E., Pecnik, R., and Colonna, P., “Exact Jacobians for Implicit Navier – Stokes Simulations of Equilibrium Real Gas Flows”, J. Comput. Phys., 270 (2014), 459–477 | DOI | MR | Zbl

[12] Toro, E. F., Spruce, M., and Speares, W., “Restoration of the Contact Surface in the HLL-Riemann Solver”, Shock Waves, 4:1 (1994), 25–34 | DOI | Zbl

[13] Liou, M. S., “A Sequel to AUSM: AUSM+”, J. Comput. Phys., 129:2 (1996), 364–382 | DOI | MR | Zbl

[14] Kurganov, A. and Tadmor, E., “New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection-Diffusion Equations”, J. Comput. Phys., 160:1 (2000), 241–282 | DOI | MR | Zbl

[15] Toro, E., Castrob, C., and Lee, B., “A Novel Numerical Flux for the 3D Euler Equations with General Equation of State”, J. Comput. Phys., 303 (2015), 80–94 | DOI | MR | Zbl

[16] Godunov, S. K., “A Difference Method for Numerical Calculation of Discontinuous Solutions of the Equations of Hydrodynamics”, Mat. Sb. (N.S.), 47 (89):3 (1959), 271–306 (Russian) | MR | Zbl

[17] Aksenov, A. G., Tishkin, V. F., and Chechetkin, V. M., “Godunov-Type Method and Shafranov's Task for Multi-Temperature Plasma”, Math. Models Comput. Simul., 11:3 (2019), 360–373 | DOI | MR

[18] Miller, G. H. and Puckett, E. G., “A High-Order Godunov Method for Multiple Condensed Phases”, J. Comput. Phys., 128:1 (1996), 134–164 | DOI | Zbl

[19] Guardone, A. and Vigevano, L., “Roe Linearization for the van der Waals Gas”, J. Comput. Phys., 175:1 (2002), 50–78 | DOI | Zbl

[20] Gallouët, T. and Hérard, J.-M., “A New Approximate Godunov Scheme with Application to Dense Gas-Solid Flows”, Proc. of the 17th AIAA Computational Fluid Dynamics Conference (Toronto, Canada, Jun 2005), 14 pp.

[21] Glaister, P., “Riemann Solvers with Primitive Parameter Vectors for Two-Dimensional Compressible Flows of a Real Gas”, Comput. Math. Appl., 37:2 (1999), 75–92 | DOI | MR | Zbl

[22] Prokopov, G. P. and Severin, A. V., Rational Realization of Godunov's Method, Preprint No. 29, Keldysh Institute of Applied Mathematics, Moscow, 2009, 24 pp. (Russian) | MR

[23] Borisov, V. E. and Rykov, Yu. G., An Exact Riemann Solver in the Algorithms for Multicomponent Gas Dynamics, Preprint No. 96, Keldysh Institute of Applied Mathematics, Moscow, 2009, 28 pp. (Russian)

[24] Zh. Vychisl. Mat. Mat. Fiz., 48:6 (2008), 1102–1110 (Russian) | DOI | MR | Zbl

[25] Kulikovskii, A. G., Pogorelov, N. V., and Semenov, A. Yu., “Mathematical Aspects of Numerical Solution of Hyperbolic Systems”, Hyperbolic Problems: Theory, Numerics, Applications, Internat. Schriftenreihe Numer. Math., 130, eds. R. Jeltsch, M. Fey, Birkhäuser, Basel, 1999, 589–598 | MR | Zbl

[26] Raeder, T., Tenenev, V. A., Koroleva, M. R., and Mishchenkova, O. V., “Nonlinear Processes in Safety Systems for Substances with Parameters Close to a Critical State”, Russian J. Nonlinear Dyn., 17:1 (2021), 119–138 | MR | Zbl

[27] Rusyak, I. G. and Tenenev, V. A., “The Impact of the Dimension of a Mathematical Model of Internal Ballistics on Design Parameters of a Shot for Grain Gunpowder Charges”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 73, 95–110 (Russian)

[28] Raeder, T., Tenenev, V. A., and Chernova, A. A., “Numerical Simulation of Unstable Operating Modes of a Safety Valve”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 68, 141–157 (Russian) | MR

[29] Yakhot, V. and Orszag, S. A., “Renormalization-Group Analysis of Turbulence”, Phys. Rev. Lett., 57:14 (1986), 1722–1724 | DOI | MR

[30] Wesseling, P., Segal, A., and Kassel, C. G. M., “Computing Flows on General Three-Dimensional Nonsmooth Staggered Grids”, J. Comput. Phys., 149:2 (1999), 333–362 | DOI | MR | Zbl

[31] Tenenev, V. A., Rusyak, I. G., and Gorohov, M. M., “Numerical Solution of a Combustion Problem for Aluminium Particles in Two-Phase Stream”, Matem. Mod., 9:5 (1997), 87–96

[32] Godunov, S. K., Zabrodin, A. V., Ivanov, M. Ya., Kraiko, A. N., and Prokopov, G. P., Numerical Solution of Multidimensional Problems of Gas Dynamics, Nauka, Moscow, 1976 (Russian) | MR