Spectral Properties of Low-order Dynamo Systems
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 289-296.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solar 11-year activity cycle is a famous manifestation of magnetic activity of celestial bodies. The physical nature of the solar cycle is believed to be large-scale magnetic field excitation in the form of a wave of a quasi-stationary magnetic field propagating from middle solar latitudes to the solar equator. The power spectrum of solar magnetic activity recorded in sunspot data and underlying solar dynamo action contains quite a stable oscillation known as the 11-year cycle as well as the continuous component and some additional weak peaks. We consider a low- order model for the solar dynamo. We show that in some range of governing parameters this model can reproduce spectra with pronounced dominating frequency and wide spectral peaks in the low-frequency region. The spectra obtained are qualitatively similar to the observed solar activity spectrum.
Keywords: solar activity, solar dynamo, low-order models, spectral properties.
@article{ND_2022_18_2_a8,
     author = {P. Frick and R. Okatev and D. Sokoloff},
     title = {Spectral {Properties} of {Low-order} {Dynamo} {Systems}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {289--296},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_2_a8/}
}
TY  - JOUR
AU  - P. Frick
AU  - R. Okatev
AU  - D. Sokoloff
TI  - Spectral Properties of Low-order Dynamo Systems
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 289
EP  - 296
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_2_a8/
LA  - en
ID  - ND_2022_18_2_a8
ER  - 
%0 Journal Article
%A P. Frick
%A R. Okatev
%A D. Sokoloff
%T Spectral Properties of Low-order Dynamo Systems
%J Russian journal of nonlinear dynamics
%D 2022
%P 289-296
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_2_a8/
%G en
%F ND_2022_18_2_a8
P. Frick; R. Okatev; D. Sokoloff. Spectral Properties of Low-order Dynamo Systems. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 289-296. http://geodesic.mathdoc.fr/item/ND_2022_18_2_a8/

[1] Parker, E. N., “Hydromagnetic Dynamo Models”, Astrophys. J., 122 (1955), 293–314 | DOI | MR

[2] Nefedov, S. N. and Sokoloff, D. D., “Parker's Dynamo As Specific Behavior of a Dynamical System”, Astron. Rep., 54:3 (2010), 247–253 | DOI

[3] Frick, P., Sokoloff, D., Stepanov, R., Pipin, V., and Usoskin, I., “Spectral Characteristic of Mid-Term Quasi-Periodicities in Sunspot Data”, Mon. Not. R. Astron. Soc., 491:4 (2019), 5572–5578 | DOI | MR

[4] Frick, P. G., “Lorenz System and Space-Temporal Spectra of Turbulence”, Heat and Mass Transfer Processes in Viscous Liquids, UrO RAN, Sverdlovsk, 1986, 1–15

[5] Stern, V. N., “Spectral Analysis of Lorenz Attractor”, Preprint No. 31, Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 1979, 24 pp. (Russian)

[6] Crutchfield, J., Farmer, D., Packard, N., Shaw, R., Jones, G., and Donnelly, R. J., “Power Spectral Analysis of a Dynamical System”, Phys. Lett. A, 76:1 (1980), 1–4 | DOI | MR

[7] Farmer, D., Crutchfield, J., Froehling, H., Packard, N., and Shaw, R., “Power Spectra and Mixing Properties of Strange Attractors”, Ann. N. Y. Acad. Sci., 357:1 (1980), 453–472 | DOI | MR | Zbl

[8] Lacaze, L., Herreman, W., Le Bars, M., Le Dizès, S., and Le Gal, P., “Magnetic Field Induced by Elliptical Instability in a Rotating Spheroid”, Geophys. Astrophys. Fluid Dyn., 100:4–5 (2006), 299–317 | DOI | MR | Zbl

[9] Cameron, R. H. and Schüssler, M., “Understanding Solar Cycle Variability”, Astrophys. J., 843:2 (2017), ID 111, 12 pp. | DOI

[10] Fiz. Zemli, 2018, no. 4, 121–126 (Russian) | DOI

[11] Sokoloff, D. D., Shibalova, A. S., Obridko, V. N., and Pipin, V. V., “Shape of Solar Cycles and Mid-Term Solar Activity Oscillations”, Mon. Not. R. Astron. Soc., 497:4 (2020), 4376–4383 | DOI

[12] Bazilevskaya, G., Broomhall, A.-M., Elsworth, Y., and Nakariakov, V., “A Combined Analysis of the Observational Aspects of the Quasi-biennial Oscillation in Solar Magnetic Activity”, Space Sci. Rev., 186:1–4 (2014), 359–386 | DOI

[13] Vaquero, J. M., Svalgaard, L., Carrasco, V. M. S., Clette, F., Lefèvre, L., Gallego, M. C., Arlt, R., Aparicio, A. J. P., Richard, J.-G., and Howe, R., “A Revised Collection of Sunspot Group Numbers”, Sol. Phys., 291:9–10 (2016), 3061–3074 | DOI

[14] Frick, P., Soon, W., Popova, E., and Baliunas, S., “Time-Spectra of Chromospheric Activity of Old Solar-Type Stars: Detection of Rotational Signals from Double Wavelet Analysis”, New Astron., 9:8 (2004), 599–609 | DOI

[15] Stepanov, R., Bondar', N. I., Katsova, M. M., Sokoloff, D., and Frick, P., “Wavelet Analysis of the Long-Term Activity of V833 Tau”, Mon. Not. R. Astron. Soc., 495:4 (2020), 3788–3794 | DOI

[16] Mursula, K., Usoskin, I., and Ziegler, B., “On the Claimed $5.5$-Year Periodicity in Solar Activity”, Sol. Phys., 10:1 (1997), 201–210 | DOI

[17] Le Mouel, J.-L., Lepes, F., and Courtillot, V., “A Solar Signature in Many Climate Indeces”, J. Geophys. Res., 124:8 (2019), 6403–6417 | DOI

[18] Velasco Herrera, V. M., Soon, W., and Legates, D. R., “Does Machine Learning Reconstruct Missing Sunspots and Forecast a New Solar Minimum?”, Adv. Space Res., 68:3 (2021), 1485–1501 | DOI

[19] Peristykh, A. N. and Damon, P. E., “Persistence of the Gleissberg 88-Year Solar Cycle over the Last $\sim$ 12 000 Years: Evidence from Cosmogenic Isotopes”, J. Geophys. Res., 108:A1 (2003), 1003, 15 pp. | DOI

[20] Ogurtsov, M., Lindholm, M., Jalkanen, R., and Veretenenko, S., “Evidence for the Gleissberg Solar Cycle at the High-Latitudes of the Northern Hemisphere”, Adv. Space Res., 55:5 (2015), 1285–1290 | DOI

[21] Mursula, K., Usoskin, I. G., and Kovaltsov, G. A., “Persistent 22-Year Cycle in Sunspot Activity: Evidence for a Relic Solar Magnetic Field”, Sol. Phys., 198:1 (2001), 51-56 | DOI