Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_2_a7, author = {A. Dzhalilov and D. Mayer and A. Aliyev}, title = {The {Thermodynamic} {Formalism} and the {Central} {Limit}}, journal = {Russian journal of nonlinear dynamics}, pages = {253--287}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_2_a7/} }
A. Dzhalilov; D. Mayer; A. Aliyev. The Thermodynamic Formalism and the Central Limit. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 253-287. http://geodesic.mathdoc.fr/item/ND_2022_18_2_a7/
[1] Crutchfield, J., Nauenberg, M., and Rudnick, J., “Scaling for External Noise at the Onset of Chaos”, Phys. Rev. Lett., 46:14 (1981), 933–935 | DOI | MR
[2] De Faria, E. and de Melo, W. M., “Rigidity of Critical Circle Maps: 1”, J. Eur. Math. Soc., 1:4 (1999), 339–392 | DOI | MR | Zbl
[3] Teoret. Mat. Fiz., 138:2 (2004), 225–245 (Russian) | DOI | DOI | MR | Zbl
[4] Dzhalilov, A. and Aliev, A., “On Location of Singularity Points of Circle Maps”, Uzbek Math. J., 2019, no. 1, 50–59 | MR | Zbl
[5] Djalilov, A. and Karimov, J., “The Thermodynamic Formalism and Exponents of Singularity of Invariant Measure of Circle Maps with a Single Break”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:3 (2020), 343–366 (Russian) | DOI | MR
[6] Funktsional. Anal. i Prilozhen., 32:3 (1998), 11–21 (Russian) | DOI | DOI | MR | Zbl
[7] Dzhalilov, A. A. and Liousse, I., “Circle Homeomorphisms with Two Break Points”, Nonlinearity, 19:8 (2006), 1951–1968 | DOI | MR | Zbl
[8] Dzhalilov, A., Liousse, I., and Mayer, D., “Singular Measures of Piecewise Smooth Circle Homeomorphisms with Two Break Points”, Discrete Contin. Dyn. Syst., 24:2 (2009), 381–403 | DOI | MR | Zbl
[9] Díaz-Espinosa, O. and de la Llave, R., “Renormalization and Central Limit Theorem for Critical Dynamical Systems with Weak External Noise”, J. Mod. Dyn., 1:3 (2007), 477–543 | DOI | MR
[10] Katznelson, Y. and Ornstein, D., “The Absolute Continuity of the Conjugation of Certain Diffeomorphisms of the Circle”, Ergodic Theory Dynam. Systems, 9:4 (1989), 681–690 | DOI | MR
[11] Khanin, K. and Khmelev, D., “Renormalizations and Rigidity Theory for Circle Homeomorphisms with Singularities of the Break Type”, Comm. Math. Phys., 235:1 (2003), 69–124 | DOI | MR | Zbl
[12] Khanin, K. and Kocić, S., “Renormalization Conjecture and Rigidity Theory for Circle Diffeomorphisms with Breaks”, Geom. Funct. Anal., 24:6 (2014), 2002–2028 | DOI | MR | Zbl
[13] Khanin, K. M. and Vul, E. B., “Circle Homeomorphisms with Weak Discontinuities”, Dynamical Systems and Statistical Mechanics (Moscow, 1991), Adv. Soviet Math., 3, ed. Ya. G. Sinaĭ, AMS, Providence, R.I., 1991, 57–98 | MR
[14] Ruelle, D., Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics, Encyclopedia Math. Appl., 5, Addison-Wesley, Reading, Mass., 1978, xix+183 pp. | MR | Zbl
[15] Shraiman, B., Wayne, C. E., and Martin, P. C., “Scaling Theory for Noisy Period-Doubling Transitions to Chaos”, Phys. Rev. Lett., 46:14 (1981), 935–939 | DOI | MR
[16] Uspekhi Mat. Nauk, 39:3(237) (1984), 3–37 (Russian) | DOI | MR | Zbl