The Thermodynamic Formalism and the Central Limit
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 253-287.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $T\in C^{2+\varepsilon}(S^{1}\setminus\{x_b^{}\})$, $\varepsilon>0$, be an orientation preserving circle homeomorphism with rotation number $\rho_T^{}=[k_1^{},\,k_2^{},\,\ldots,\,k_m^{},\,1,\,1,\,\ldots]$, $m\ge1$, and a single break point $x_b^{}$. Stochastic perturbations $\overline{z}_{n+1}^{} = T(\overline{z}_n^{}) + \sigma \xi_{n+1}^{}$, $\overline{z}_0^{}:=z\in S^1$ of critical circle maps have been studied some time ago by Diaz-Espinoza and de la Llave, who showed for the resulting sum of random variables a central limit theorem and its rate of convergence. Their approach used the renormalization group technique. We will use here Sinai's et al. thermodynamic formalism approach, generalised to circle maps with a break point by Dzhalilov et al., to extend the above results to circle homemorphisms with a break point. This and the sequence of dynamical partitions allows us, following earlier work of Vul at al., to establish a symbolic dynamics for any point ${z\in S^1}$ and to define a transfer operator whose leading eigenvalue can be used to bound the Lyapunov function. To prove the central limit theorem and its convergence rate we decompose the stochastic sequence via a Taylor expansion in the variables $\xi_i$ into the linear term $L_n^{}(z_0^{})= \xi_n^{}+\sum\limits_{k=1}^{n-1}\xi_k^{}\prod\limits_{j=k}^{n-1} T'(z_j^{})$, ${z_0^{}\in S^1}$ and a higher order term, which is possible in a neighbourhood $A_k^n$ of the points $z_k^{}$, ${k\le n-1}$, not containing the break points of $T^{n}$. For this we construct for a certain sequence $\{n_m^{}\}$ a series of neighbourhoods $A_k^{n_m^{}}$ of the points $z_k^{}$ which do not contain any break point of the map $T^{q_{n_m^{}}^{}}$, $q_{n_m^{}}^{}$ the first return times of $T$. The proof of our results follows from the proof of the central limit theorem for the linearized process.
Keywords: circle map, rotation number, break point, central limit theorem, thermodynamic formalism.
Mots-clés : stochastic perturbation
@article{ND_2022_18_2_a7,
     author = {A. Dzhalilov and D. Mayer and A. Aliyev},
     title = {The {Thermodynamic} {Formalism} and the {Central} {Limit}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {253--287},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_2_a7/}
}
TY  - JOUR
AU  - A. Dzhalilov
AU  - D. Mayer
AU  - A. Aliyev
TI  - The Thermodynamic Formalism and the Central Limit
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 253
EP  - 287
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_2_a7/
LA  - en
ID  - ND_2022_18_2_a7
ER  - 
%0 Journal Article
%A A. Dzhalilov
%A D. Mayer
%A A. Aliyev
%T The Thermodynamic Formalism and the Central Limit
%J Russian journal of nonlinear dynamics
%D 2022
%P 253-287
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_2_a7/
%G en
%F ND_2022_18_2_a7
A. Dzhalilov; D. Mayer; A. Aliyev. The Thermodynamic Formalism and the Central Limit. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 253-287. http://geodesic.mathdoc.fr/item/ND_2022_18_2_a7/

[1] Crutchfield, J., Nauenberg, M., and Rudnick, J., “Scaling for External Noise at the Onset of Chaos”, Phys. Rev. Lett., 46:14 (1981), 933–935 | DOI | MR

[2] De Faria, E. and de Melo, W. M., “Rigidity of Critical Circle Maps: 1”, J. Eur. Math. Soc., 1:4 (1999), 339–392 | DOI | MR | Zbl

[3] Teoret. Mat. Fiz., 138:2 (2004), 225–245 (Russian) | DOI | DOI | MR | Zbl

[4] Dzhalilov, A. and Aliev, A., “On Location of Singularity Points of Circle Maps”, Uzbek Math. J., 2019, no. 1, 50–59 | MR | Zbl

[5] Djalilov, A. and Karimov, J., “The Thermodynamic Formalism and Exponents of Singularity of Invariant Measure of Circle Maps with a Single Break”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:3 (2020), 343–366 (Russian) | DOI | MR

[6] Funktsional. Anal. i Prilozhen., 32:3 (1998), 11–21 (Russian) | DOI | DOI | MR | Zbl

[7] Dzhalilov, A. A. and Liousse, I., “Circle Homeomorphisms with Two Break Points”, Nonlinearity, 19:8 (2006), 1951–1968 | DOI | MR | Zbl

[8] Dzhalilov, A., Liousse, I., and Mayer, D., “Singular Measures of Piecewise Smooth Circle Homeomorphisms with Two Break Points”, Discrete Contin. Dyn. Syst., 24:2 (2009), 381–403 | DOI | MR | Zbl

[9] Díaz-Espinosa, O. and de la Llave, R., “Renormalization and Central Limit Theorem for Critical Dynamical Systems with Weak External Noise”, J. Mod. Dyn., 1:3 (2007), 477–543 | DOI | MR

[10] Katznelson, Y. and Ornstein, D., “The Absolute Continuity of the Conjugation of Certain Diffeomorphisms of the Circle”, Ergodic Theory Dynam. Systems, 9:4 (1989), 681–690 | DOI | MR

[11] Khanin, K. and Khmelev, D., “Renormalizations and Rigidity Theory for Circle Homeomorphisms with Singularities of the Break Type”, Comm. Math. Phys., 235:1 (2003), 69–124 | DOI | MR | Zbl

[12] Khanin, K. and Kocić, S., “Renormalization Conjecture and Rigidity Theory for Circle Diffeomorphisms with Breaks”, Geom. Funct. Anal., 24:6 (2014), 2002–2028 | DOI | MR | Zbl

[13] Khanin, K. M. and Vul, E. B., “Circle Homeomorphisms with Weak Discontinuities”, Dynamical Systems and Statistical Mechanics (Moscow, 1991), Adv. Soviet Math., 3, ed. Ya. G. Sinaĭ, AMS, Providence, R.I., 1991, 57–98 | MR

[14] Ruelle, D., Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics, Encyclopedia Math. Appl., 5, Addison-Wesley, Reading, Mass., 1978, xix+183 pp. | MR | Zbl

[15] Shraiman, B., Wayne, C. E., and Martin, P. C., “Scaling Theory for Noisy Period-Doubling Transitions to Chaos”, Phys. Rev. Lett., 46:14 (1981), 935–939 | DOI | MR

[16] Uspekhi Mat. Nauk, 39:3(237) (1984), 3–37 (Russian) | DOI | MR | Zbl