Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_2_a4, author = {E. G. Ekomasov and V. N. Nazarov and K. Yu. Samsonov}, title = {Changing the {Dynamic} {Parameters} of {Localized}}, journal = {Russian journal of nonlinear dynamics}, pages = {217--229}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_2_a4/} }
TY - JOUR AU - E. G. Ekomasov AU - V. N. Nazarov AU - K. Yu. Samsonov TI - Changing the Dynamic Parameters of Localized JO - Russian journal of nonlinear dynamics PY - 2022 SP - 217 EP - 229 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2022_18_2_a4/ LA - en ID - ND_2022_18_2_a4 ER -
E. G. Ekomasov; V. N. Nazarov; K. Yu. Samsonov. Changing the Dynamic Parameters of Localized. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 217-229. http://geodesic.mathdoc.fr/item/ND_2022_18_2_a4/
[1] The sine-Gordon Model and Its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics, eds. J. Cuevas-Maraver, P. Kevrekidis, F. Williams, Springer, Cham, 2014, XIII, 263 pp. | MR | Zbl
[2] Shamsutdinov, M. A., Lomakina, I. Yu., Nazarov, V. N., Kharisov, A. T., and Shamsutdinov, D. M., Ferro- and Antiferromagnetodynamics. Nonlinear Oscillations, Waves, and Solitons, Nauka, Moscow, 2009, 456 pp. (Russian)
[3] Brown, O. M. and Kivshar, Yu. S., The Frenkel – Kontorova Model: Concepts, Methods, and Applications, Springer, Berlin, 2004, XVIII, 472 pp. | MR
[4] Pis'ma v Zh. Èksper. Teoret. Fiz., 110:9 (2019), 607–613 (Russian) | DOI | DOI
[5] Koutvitsky, V. A. and Maslov, E. M., “Instability of Coherent States of a Real Scalar Field”, J. Math. Phys., 47:2 (2006), 022302, 17 pp. | DOI | MR | Zbl
[6] García-Ñustes, M. A., Marín, J. F., and González, J. A., “Bubblelike Structures Generated by Activation of Internal Shape Modes in Two-Dimensional sine-Gordon Line Solitons”, Phys. Rev. E, 95:3 (2017), 032222, 9 pp. | DOI | MR
[7] Castro-Montes, A. G., Marín, J. F., Teca-Wellmann, D., González, J. A., and García-Ñustes, M. A., “Stability of Bubble-Like Fluxons in Disk-Shaped Josephson Junctions in the Presence of a Coaxial Dipole Current”, Chaos, 30:6 (2020), 063132, 12 pp. | DOI | MR
[8] Zh. Vychisl. Mat. Mat. Fiz., 52:1 (2012), 105–111 (Russian) | DOI | MR | MR | Zbl
[9] Ekomasov, E. G., Gumerov, A. M., and Murtazin, R. R., “Interaction of sine-Gordon Solitons in the Model with Attracting Impurities”, Math. Methods Appl. Sci., 40:17 (2017), 6178–6186 | DOI | MR | Zbl
[10] Starodub, I. O. and Zolotaryuk, Ya., “Fluxon Interaction with the Finite-Size Dipole Impurity”, Phys. Lett. A, 383:13 (2019), 1419–1426 | DOI | MR
[11] González, J. A., Bellorín, A., García-Ñustes, M. A., Guerrero, L. E., Jiménez, S., and Vázquez, L., “Arbitrarily Large Numbers of Kink Internal Modes in Inhomogeneous sine-Gordon Equations”, Phys. Lett. A, 381:24 (2017), 1995–1998 | DOI | MR | Zbl
[12] Teoret. Mat. Fiz., 167:3 (2011), 420–431 (Russian) | DOI | DOI | MR
[13] Gumerov, A. M., Ekomasov, E. G., Murtazin, R. R., and Nazarov, V. N., “Transformation of sine-Gordon Solitons in Models with Variable Coefficients and Damping”, Comput. Math. Math. Phys., 55:4 (2015), 628–637 | DOI | MR | Zbl
[14] Ekomasov, E. G., Gumerov, A. M., and Kudryavtsev, R. V., “Resonance Dynamics of Kinks in the sine-Gordon Model with Impurity, External Force and Damping”, J. Comput. Appl. Math., 312 (2017), 198–208 | DOI | MR | Zbl
[15] Zh. Vychisl. Mat. Mat. Fiz., 54:3 (2014), 481–495 (Russian) | DOI | MR | Zbl
[16] Uspekhi Fiz. Nauk, 167:4 (1997), 377–406 (Russian) | DOI | DOI
[17] Saadatmand, D., Dmitriev, S. V., Borisov, D. I., and Kevrekidis, P. G., “Interaction of sine-Gordon Kinks and Breathers with a Parity-Time-Symmetric Defect”, Phys. Rev. E, 90:5 (2014), 052902, 10 pp. | DOI | MR
[18] Pis'ma v Zh. Èksper. Teoret. Fiz., 101:12 (2015), 935–939 (Russian) | DOI
[19] Ekomasov, E. G., Gumerov, A. M., Kudryavtsev, R. V., Dmitriev, S. V., and Nazarov, V. N., “Multisoliton Dynamics in the sine-Gordon Model with Two Point Impurities”, Braz. J. Phys., 48:6 (2018), 576–584 | DOI
[20] Gumerov, A. M., Ekomasov, E. G., Kudryavtsev, R. V., and Fakhretdinov, M. I., “Excitation of Large-Amplitude Localized Nonlinear Waves by the Interaction of Kinks of the sine-Gordon-Equation with Attracting Impurity”, Russian J. Nonlinear Dyn., 15:1 (2019), 21–34 | MR | Zbl
[21] Javidan, K., “Analytical Formulation for Soliton-Potential Dynamics”, Phys. Rev. E, 78:4 (2008), 046607, 8 pp. | DOI
[22] Piette, B. and Zakrzewski, W. J., “Scattering of sine-Gordon Kinks on Potential Wells”, J. Phys. A, 40:22 (2007), 5995–6010 | DOI | MR | Zbl
[23] Al-Alawi, J. H. and Zakrzewski, W. J., “Scattering of Topological Solitons on Barriers and Holes of Deformed sine-Gordon Models”, J. Phys. A, 41:31 (2008), 315206, 17 pp. | DOI | MR | Zbl
[24] Baron, H. E. and Zakrzewski, W. J., “Collective Coordinate Approximation to the Scattering of Solitons in Modified NLS and sine-Gordon Models”, J. High Energy Phys., 2016, no. 6, 185, 32 pp. | DOI | MR | Zbl
[25] Goatham, S. W., Mannering, L. E., Hann, R., and Krusch, S., “Dynamics of Multi-Kinks in the Presence of Wells and Barriers”, Acta Phys. Polonica B, 42 (2011), 2087–2106 | DOI
[26] Dodd, R. K., Eilbeck, J. Ch., Gibbon, J. D., and Morris, H. C., Solitons and Nonlinear Wave Equations, Acad. Press, New York, 1982, x+630 pp. | MR | Zbl
[27] Mohebbi, A. and Dehghan, M., “High-Order Solution of One-Dimensional sine-Gordon Equation Using Compact Finite Difference and DIRKN Methods”, Math. Comput. Modelling, 51:5–6 (2010), 537–549 | DOI | MR | Zbl
[28] Soori, Z. and Aminataei, A., “The Spectral Method for Solving sine-Gordon Equation Using a New Orthogonal Polynomial”, ISRN Appl. Math., 2012 (2012), 462731, 12 pp. | DOI | MR | Zbl
[29] Zh. Vychisl. Mat. Mat. Fiz., 50:12 (2010), 2176–2183 (Russian) | DOI | MR | Zbl
[30] Ma, L.-M. and Wu, Z.-M., “A Numerical Method for One-Dimensional Nonlinear sine-Gordon Equation Using Multiquadric Quasi-Interpolation”, Chin. Phys. B, 18:8 (2009), 3099–3103 | DOI | MR
[31] Zh. Vychisl. Mat. Mat. Fiz., 47:7 (2007), 1208–1220 (Russian) | DOI | MR
[32] Nazarov, V. N., Kalyakin, L. A., and Shamsutdinov, M. A., “Autoresonance Parametric Excitation of the Magnetic Breather in a Uniaxial Ferromagnet”, Solid State Phenomena, 2011, no. 168–169, 81–84
[33] Zh. Vychisl. Mat. Mat. Fiz., 59:8 (2019), 1392–1400 (Russian) | DOI | MR | Zbl
[34] Kalyakin, L. A., “Autoresonance in a Dynamic System”, Contemporary Mathematics and Its Applications, v. 5, Institute of Cybernetics, Tbilisi, 2003, 79–108 (Russian) | MR
[35] Nazarov, V. N. and Ekomasov, E. G., “Autoresonance Control Model of Nonlinear Dynamics of Magnetization in a Three-Layer Antiferromagnetic Structure in the Presence of Attenuation”, Mater. Lett., 8:2 (2018), 158–164 | DOI
[36] Friedland, L. and Shagalov, A. G., “Emergence and Control of Breather and Plasma Oscillations by Synchronizing Perturbations”, Phys. Rev. E, 73:6 (2006), 066612, 8 pp. | DOI
[37] Ekomasov, E. G., Murtazin, R. R., and Nazarov, V. N., “Excitation of Magnetic Inhomogeneities in Three-Layer Ferromagnetic Structure with Different Parameters of the Magnetic Anisotropy and Exchange”, J. Magn. Magn. Mater., 385 (2015), 217–221 | DOI
[38] Batalov, S. V. and Shagalov, A. G., “Resonance Control of Solitons of Spin Waves”, Phys. Met. Metallogr., 114 (2013), 826–832 | DOI | MR