Changing the Dynamic Parameters of Localized
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 217-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

Possibility of changing the dynamic parameters of localized breather and soliton waves for the sine-Gordon equation in the model with extended impurity, variable external force and dissipation was investigated using the autoresonance method. The model of ferromagnetic structure consisting of two wide identical layers separated by a thin layer with modified values of magnetic anisotropy parameter was taken as a basis. Frequency of external field is a linear function of time. The sine-Gordon equation (SGE) was solved numerically using the finite differences method with explicit scheme of integration. For certain values of the extended impurity parameters a magnetic inhomogeneity in the form of magnetic breather is formed when domain wall passes through it with constant velocity. The numerical simulation showed that using special variable force and small amplitude it is possible to resonantly increase the amplitude of breather. For each case of the impurity parameters values, there is a threshold value of the magnetic field amplitude leading to resonance. Geometric parameters of thin layer also have influence on the resonance effect — for decreasing layer width the breather amplitude grows more slowly. For large layer width the translation mode of breather oscillations is also excited. For certain parameters of extended impurity, a soliton can form. For a special type of variable field with frequency linearly dependent on time, soliton is switched to antisoliton and vice versa.
Keywords: autoresonance, spatially modulated periodic potential, impurities, kink, breather
Mots-clés : sine-Gordon equation, soliton.
@article{ND_2022_18_2_a4,
     author = {E. G. Ekomasov and V. N. Nazarov and K. Yu. Samsonov},
     title = {Changing the {Dynamic} {Parameters} of {Localized}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {217--229},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_2_a4/}
}
TY  - JOUR
AU  - E. G. Ekomasov
AU  - V. N. Nazarov
AU  - K. Yu. Samsonov
TI  - Changing the Dynamic Parameters of Localized
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 217
EP  - 229
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_2_a4/
LA  - en
ID  - ND_2022_18_2_a4
ER  - 
%0 Journal Article
%A E. G. Ekomasov
%A V. N. Nazarov
%A K. Yu. Samsonov
%T Changing the Dynamic Parameters of Localized
%J Russian journal of nonlinear dynamics
%D 2022
%P 217-229
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_2_a4/
%G en
%F ND_2022_18_2_a4
E. G. Ekomasov; V. N. Nazarov; K. Yu. Samsonov. Changing the Dynamic Parameters of Localized. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 217-229. http://geodesic.mathdoc.fr/item/ND_2022_18_2_a4/

[1] The sine-Gordon Model and Its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics, eds. J. Cuevas-Maraver, P. Kevrekidis, F. Williams, Springer, Cham, 2014, XIII, 263 pp. | MR | Zbl

[2] Shamsutdinov, M. A., Lomakina, I. Yu., Nazarov, V. N., Kharisov, A. T., and Shamsutdinov, D. M., Ferro- and Antiferromagnetodynamics. Nonlinear Oscillations, Waves, and Solitons, Nauka, Moscow, 2009, 456 pp. (Russian)

[3] Brown, O. M. and Kivshar, Yu. S., The Frenkel – Kontorova Model: Concepts, Methods, and Applications, Springer, Berlin, 2004, XVIII, 472 pp. | MR

[4] Pis'ma v Zh. Èksper. Teoret. Fiz., 110:9 (2019), 607–613 (Russian) | DOI | DOI

[5] Koutvitsky, V. A. and Maslov, E. M., “Instability of Coherent States of a Real Scalar Field”, J. Math. Phys., 47:2 (2006), 022302, 17 pp. | DOI | MR | Zbl

[6] García-Ñustes, M. A., Marín, J. F., and González, J. A., “Bubblelike Structures Generated by Activation of Internal Shape Modes in Two-Dimensional sine-Gordon Line Solitons”, Phys. Rev. E, 95:3 (2017), 032222, 9 pp. | DOI | MR

[7] Castro-Montes, A. G., Marín, J. F., Teca-Wellmann, D., González, J. A., and García-Ñustes, M. A., “Stability of Bubble-Like Fluxons in Disk-Shaped Josephson Junctions in the Presence of a Coaxial Dipole Current”, Chaos, 30:6 (2020), 063132, 12 pp. | DOI | MR

[8] Zh. Vychisl. Mat. Mat. Fiz., 52:1 (2012), 105–111 (Russian) | DOI | MR | MR | Zbl

[9] Ekomasov, E. G., Gumerov, A. M., and Murtazin, R. R., “Interaction of sine-Gordon Solitons in the Model with Attracting Impurities”, Math. Methods Appl. Sci., 40:17 (2017), 6178–6186 | DOI | MR | Zbl

[10] Starodub, I. O. and Zolotaryuk, Ya., “Fluxon Interaction with the Finite-Size Dipole Impurity”, Phys. Lett. A, 383:13 (2019), 1419–1426 | DOI | MR

[11] González, J. A., Bellorín, A., García-Ñustes, M. A., Guerrero, L. E., Jiménez, S., and Vázquez, L., “Arbitrarily Large Numbers of Kink Internal Modes in Inhomogeneous sine-Gordon Equations”, Phys. Lett. A, 381:24 (2017), 1995–1998 | DOI | MR | Zbl

[12] Teoret. Mat. Fiz., 167:3 (2011), 420–431 (Russian) | DOI | DOI | MR

[13] Gumerov, A. M., Ekomasov, E. G., Murtazin, R. R., and Nazarov, V. N., “Transformation of sine-Gordon Solitons in Models with Variable Coefficients and Damping”, Comput. Math. Math. Phys., 55:4 (2015), 628–637 | DOI | MR | Zbl

[14] Ekomasov, E. G., Gumerov, A. M., and Kudryavtsev, R. V., “Resonance Dynamics of Kinks in the sine-Gordon Model with Impurity, External Force and Damping”, J. Comput. Appl. Math., 312 (2017), 198–208 | DOI | MR | Zbl

[15] Zh. Vychisl. Mat. Mat. Fiz., 54:3 (2014), 481–495 (Russian) | DOI | MR | Zbl

[16] Uspekhi Fiz. Nauk, 167:4 (1997), 377–406 (Russian) | DOI | DOI

[17] Saadatmand, D., Dmitriev, S. V., Borisov, D. I., and Kevrekidis, P. G., “Interaction of sine-Gordon Kinks and Breathers with a Parity-Time-Symmetric Defect”, Phys. Rev. E, 90:5 (2014), 052902, 10 pp. | DOI | MR

[18] Pis'ma v Zh. Èksper. Teoret. Fiz., 101:12 (2015), 935–939 (Russian) | DOI

[19] Ekomasov, E. G., Gumerov, A. M., Kudryavtsev, R. V., Dmitriev, S. V., and Nazarov, V. N., “Multisoliton Dynamics in the sine-Gordon Model with Two Point Impurities”, Braz. J. Phys., 48:6 (2018), 576–584 | DOI

[20] Gumerov, A. M., Ekomasov, E. G., Kudryavtsev, R. V., and Fakhretdinov, M. I., “Excitation of Large-Amplitude Localized Nonlinear Waves by the Interaction of Kinks of the sine-Gordon-Equation with Attracting Impurity”, Russian J. Nonlinear Dyn., 15:1 (2019), 21–34 | MR | Zbl

[21] Javidan, K., “Analytical Formulation for Soliton-Potential Dynamics”, Phys. Rev. E, 78:4 (2008), 046607, 8 pp. | DOI

[22] Piette, B. and Zakrzewski, W. J., “Scattering of sine-Gordon Kinks on Potential Wells”, J. Phys. A, 40:22 (2007), 5995–6010 | DOI | MR | Zbl

[23] Al-Alawi, J. H. and Zakrzewski, W. J., “Scattering of Topological Solitons on Barriers and Holes of Deformed sine-Gordon Models”, J. Phys. A, 41:31 (2008), 315206, 17 pp. | DOI | MR | Zbl

[24] Baron, H. E. and Zakrzewski, W. J., “Collective Coordinate Approximation to the Scattering of Solitons in Modified NLS and sine-Gordon Models”, J. High Energy Phys., 2016, no. 6, 185, 32 pp. | DOI | MR | Zbl

[25] Goatham, S. W., Mannering, L. E., Hann, R., and Krusch, S., “Dynamics of Multi-Kinks in the Presence of Wells and Barriers”, Acta Phys. Polonica B, 42 (2011), 2087–2106 | DOI

[26] Dodd, R. K., Eilbeck, J. Ch., Gibbon, J. D., and Morris, H. C., Solitons and Nonlinear Wave Equations, Acad. Press, New York, 1982, x+630 pp. | MR | Zbl

[27] Mohebbi, A. and Dehghan, M., “High-Order Solution of One-Dimensional sine-Gordon Equation Using Compact Finite Difference and DIRKN Methods”, Math. Comput. Modelling, 51:5–6 (2010), 537–549 | DOI | MR | Zbl

[28] Soori, Z. and Aminataei, A., “The Spectral Method for Solving sine-Gordon Equation Using a New Orthogonal Polynomial”, ISRN Appl. Math., 2012 (2012), 462731, 12 pp. | DOI | MR | Zbl

[29] Zh. Vychisl. Mat. Mat. Fiz., 50:12 (2010), 2176–2183 (Russian) | DOI | MR | Zbl

[30] Ma, L.-M. and Wu, Z.-M., “A Numerical Method for One-Dimensional Nonlinear sine-Gordon Equation Using Multiquadric Quasi-Interpolation”, Chin. Phys. B, 18:8 (2009), 3099–3103 | DOI | MR

[31] Zh. Vychisl. Mat. Mat. Fiz., 47:7 (2007), 1208–1220 (Russian) | DOI | MR

[32] Nazarov, V. N., Kalyakin, L. A., and Shamsutdinov, M. A., “Autoresonance Parametric Excitation of the Magnetic Breather in a Uniaxial Ferromagnet”, Solid State Phenomena, 2011, no. 168–169, 81–84

[33] Zh. Vychisl. Mat. Mat. Fiz., 59:8 (2019), 1392–1400 (Russian) | DOI | MR | Zbl

[34] Kalyakin, L. A., “Autoresonance in a Dynamic System”, Contemporary Mathematics and Its Applications, v. 5, Institute of Cybernetics, Tbilisi, 2003, 79–108 (Russian) | MR

[35] Nazarov, V. N. and Ekomasov, E. G., “Autoresonance Control Model of Nonlinear Dynamics of Magnetization in a Three-Layer Antiferromagnetic Structure in the Presence of Attenuation”, Mater. Lett., 8:2 (2018), 158–164 | DOI

[36] Friedland, L. and Shagalov, A. G., “Emergence and Control of Breather and Plasma Oscillations by Synchronizing Perturbations”, Phys. Rev. E, 73:6 (2006), 066612, 8 pp. | DOI

[37] Ekomasov, E. G., Murtazin, R. R., and Nazarov, V. N., “Excitation of Magnetic Inhomogeneities in Three-Layer Ferromagnetic Structure with Different Parameters of the Magnetic Anisotropy and Exchange”, J. Magn. Magn. Mater., 385 (2015), 217–221 | DOI

[38] Batalov, S. V. and Shagalov, A. G., “Resonance Control of Solitons of Spin Waves”, Phys. Met. Metallogr., 114 (2013), 826–832 | DOI | MR