Application of the Kudryashov Method for Finding
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 203-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently, motivated by the interest in the problems of nonlinear dynamics of cylindrical shells, A. I. Zemlyanukhin et al. (Nonlinear Dyn, 98, 185–194, 2019) established the so-called Schamel – Kawahara equation (SKE). The SKE generalizes the well-known nonlinear Schamel equation that arises in plasma physics problems, by adding the high-order dispersive terms from the Kawahara equation. This article presents families of new solutions to the Schamel – Kawahara model using the Kudryashov method. By performing the symbolic computation, we show that this method is a valuable and efficient mathematical tool for solving application problems modeled by nonlinear partial differential equations (NPDE).
Keywords: Kudryashov method, nonlinear PDE.
Mots-clés : Schamel – Kawahara equation, exact solutions
@article{ND_2022_18_2_a3,
     author = {O. Gonz\'alez-Gaxiola and A. Le\'on-Ram{\'\i}rez and G. Chac\'on-Acosta},
     title = {Application of the {Kudryashov} {Method} for {Finding}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {203--215},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_2_a3/}
}
TY  - JOUR
AU  - O. González-Gaxiola
AU  - A. León-Ramírez
AU  - G. Chacón-Acosta
TI  - Application of the Kudryashov Method for Finding
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 203
EP  - 215
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_2_a3/
LA  - en
ID  - ND_2022_18_2_a3
ER  - 
%0 Journal Article
%A O. González-Gaxiola
%A A. León-Ramírez
%A G. Chacón-Acosta
%T Application of the Kudryashov Method for Finding
%J Russian journal of nonlinear dynamics
%D 2022
%P 203-215
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_2_a3/
%G en
%F ND_2022_18_2_a3
O. González-Gaxiola; A. León-Ramírez; G. Chacón-Acosta. Application of the Kudryashov Method for Finding. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 203-215. http://geodesic.mathdoc.fr/item/ND_2022_18_2_a3/

[1] Kudryashov, N. A., “One Method for Finding Exact Solutions of Nonlinear Differential Equations”, Commun. Nonlinear Sci. Numer. Simul., 17:6 (2012), 2248–2253 | DOI | MR | Zbl

[2] Kudryashov, N. A., “Polynomials in Logistic Function and Solitary Waves of Nonlinear Differential Equations”, Appl. Math. Comput., 219:17 (2013), 9245–9253 | MR | Zbl

[3] Kudryashov, N. A. and Kochanov, M. B., “Quasi-Exact Solutions of Nonlinear Differential Equations”, Appl. Math. Comput., 219:4 (2012), 1793–1804 | MR | Zbl

[4] Kudryashov, N. A., Safonova, D. V., and Biswas, A., “Painlevé Analysis and a Solution to the Traveling Wave Reduction of the Radhakrishnan – Kundu – Lakshmanan Equation”, Regul. Chaotic Dyn., 24:6 (2019), 607–614 | DOI | MR | Zbl

[5] Kudryashov, N. A., “Lax Pairs and Special Polynomials Associated with Self-Similar Reductions of Sawada – Kotera and Kupershmidt Equations”, Regul. Chaotic Dyn., 25:1 (2020), 59–77 | DOI | MR | Zbl

[6] Kudryashov, N. A., “Solitary and Periodic Solutions of the Generalized Kuramoto – Sivashinsky Equation”, Regul. Chaotic Dyn., 13:3 (2008), 234–238 | DOI | MR | Zbl

[7] Gaber, A. A., Aljohani, A. F., Ebaid, A., and Tenreiro Machado, J., “The Generalized Kudryashov Method for Nonlinear Space-Time Fractional Partial Differential Equations of Burgers Type”, Nonlinear Dyn., 95:1 (2019), 361–368 | DOI | MR | Zbl

[8] Kaplan, M., Hosseini, K., Samadani, F., and Raza, N., “Optical Soliton Solutions of the Cubic-Quintic Nonlinear Schrödinger's Equation including an Anticubic Term”, J. Mod. Opt., 65:12 (2018), 1431–1436 | DOI

[9] Taghizade, N., Mirzazadeh, M., and Mahmoodirad, A., “Application of Kudryashov Method for High-Order Nonlinear Schrödinger Equation”, Indian J. Phys., 87:8 (2013), 781–785 | DOI

[10] Foroutan, M., Manafian, J., and Taghipour-Farshi, H., “Exact Solutions for Fitzhugh – Nagumo Model of Nerve Excitation via Kudryashov Method”, Opt. Quant. Electron., 49:11 (2017), 352, 11 pp. | DOI

[11] Mirzazadeh, M., Ekici, M., Sonmezoglu, A., Eslami, M., Zhou, A., Kara, A. H., Milovic, D., Majid, F. B., Biswas, A., and Belić, M., “Optical Solitons with Complex Ginzburg – Landau Equation”, Nonlinear Dyn., 85:3 (2016), 1979–2016 | DOI | MR | Zbl

[12] Mirzazadeh, M., Eslami, M., and Biswas, A., “1-Soliton Solution of KdV6 Equation”, Nonlinear Dyn., 80:1–2 (2015), 387–396 | DOI | MR | Zbl

[13] Mirzazadeh, M., Eslami, M., and Biswas, A., “Dispersive Optical Solitons by Kudryashov's Method”, Optik, 125:23 (2014), 6874–6880 | DOI

[14] Hosseini, K., Bejarbaneh, E. Y., Bekir, A., and Kaplan, M., “New Exact Solutions of Some Nonlinear Evolution Equations of Pseudoparabolic Type”, Opt. Quant. Electron., 49:7 (2017), 241, 10 pp. | DOI

[15] Amabili, M., Nonlinear Vibrations and Stability of Shells and Plates, Cambridge Univ. Press, Cambridge, 2008, xvi+374 pp. | MR | Zbl

[16] Akust. Zh., 48:6 (2002), 725–740 (Russian) | DOI

[17] Smirnov, V. V., Manevitch, L. I., Strozzi, M. and Pellicano, F., “Nonlinear Optical Vibrations of Single-Walled Carbon Nanotubes: 1. Energy Exchange and Localization of Low-Frequency Oscillations”, Phys. D, 325 (2016), 113–125 | DOI | MR | Zbl

[18] Korteweg, D. J. and de Vries, G., “On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves”, Philos. Mag. (5), 39:240 (1895), 422–443 | DOI | MR

[19] Tagare, S. G. and Chakrabarti, A., “Solution of a Generalized Korteweg – de Vries Equation”, Phys. Fluids, 17:6 (1974), 1331–1332 | DOI

[20] Schamel, H., “A Modified Korteweg – de Vries Equation for Ion Acoustic Waves due to Resonant Electrons”, J. Plasma Phys., 9:3 (1973), 377–387 | DOI | MR

[21] Kawahara, T., “Oscillatory Solitary Waves in Dispersive Media”, J. Phys. Soc. Jpn., 33:1 (1972), 260–264 | DOI

[22] Schneider, G. and Wayne, C. E., “The Rigorous Approximation of Long-Wavelength Capillary-Gravity Waves”, Arch. Ration. Mech. Anal., 162:3 (2002), 247–285 | DOI | MR | Zbl

[23] Kangalgil, F., “Travelling Wave Solutions of the Schamel – Korteweg – de Vries and the Schamel Equations”, J. Egyptian Math. Soc., 24:4 (2016), 526–531 | DOI | MR | Zbl

[24] Mancas, S. C., “Traveling Wave Solutions to Kawahara and Related Equations”, Differ. Equ. Dyn. Syst., 27:1–3 (2019), 19–37 | DOI | MR | Zbl

[25] El-Kalaawy, O. H., “Exact Solitary Solution of Schamel Equation in Plasmas with Negative Ions”, Phys. Plasmas, 18:11 (2011), 112302, 8 pp. | DOI

[26] Biswas, A., “Solitary Wave Solution for the Generalized Kawahara Equation”, Appl. Math. Lett., 22:2 (2009), 208–210 | DOI | MR | Zbl

[27] Zemlyanukhin, A. I., Andrianov, I. V., Bochkarev, A. V., and Mogilevich, L. I., “The Generalized Schamel Equation in Nonlinear Wave Dynamics of Cylindrical Shells”, Nonlinear Dyn., 98:1 (2019), 185–194 | DOI | MR | Zbl

[28] Mogilevich, L. I., Ivanov, S. V., and Blinkov, Yu. A., “Modeling of Nonlinear Waves in Two Coaxial Physically Nonlinear Shells with a Viscous Incompressible Fluid between Them, Taking into Account the Inertia of Its Motion”, Russian J. Nonlinear Dyn., 16:2 (2020), 275–290 | MR | Zbl