Application of the Kudryashov Method for Finding
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 203-215 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recently, motivated by the interest in the problems of nonlinear dynamics of cylindrical shells, A. I. Zemlyanukhin et al. (Nonlinear Dyn, 98, 185–194, 2019) established the so-called Schamel – Kawahara equation (SKE). The SKE generalizes the well-known nonlinear Schamel equation that arises in plasma physics problems, by adding the high-order dispersive terms from the Kawahara equation. This article presents families of new solutions to the Schamel – Kawahara model using the Kudryashov method. By performing the symbolic computation, we show that this method is a valuable and efficient mathematical tool for solving application problems modeled by nonlinear partial differential equations (NPDE).
Keywords: Kudryashov method, nonlinear PDE.
Mots-clés : Schamel – Kawahara equation, exact solutions
@article{ND_2022_18_2_a3,
     author = {O. Gonz\'alez-Gaxiola and A. Le\'on-Ram{\'\i}rez and G. Chac\'on-Acosta},
     title = {Application of the {Kudryashov} {Method} for {Finding}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {203--215},
     year = {2022},
     volume = {18},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_2_a3/}
}
TY  - JOUR
AU  - O. González-Gaxiola
AU  - A. León-Ramírez
AU  - G. Chacón-Acosta
TI  - Application of the Kudryashov Method for Finding
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 203
EP  - 215
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_2_a3/
LA  - en
ID  - ND_2022_18_2_a3
ER  - 
%0 Journal Article
%A O. González-Gaxiola
%A A. León-Ramírez
%A G. Chacón-Acosta
%T Application of the Kudryashov Method for Finding
%J Russian journal of nonlinear dynamics
%D 2022
%P 203-215
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/ND_2022_18_2_a3/
%G en
%F ND_2022_18_2_a3
O. González-Gaxiola; A. León-Ramírez; G. Chacón-Acosta. Application of the Kudryashov Method for Finding. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 203-215. http://geodesic.mathdoc.fr/item/ND_2022_18_2_a3/

[1] Kudryashov, N. A., “One Method for Finding Exact Solutions of Nonlinear Differential Equations”, Commun. Nonlinear Sci. Numer. Simul., 17:6 (2012), 2248–2253 | DOI | MR | Zbl

[2] Kudryashov, N. A., “Polynomials in Logistic Function and Solitary Waves of Nonlinear Differential Equations”, Appl. Math. Comput., 219:17 (2013), 9245–9253 | MR | Zbl

[3] Kudryashov, N. A. and Kochanov, M. B., “Quasi-Exact Solutions of Nonlinear Differential Equations”, Appl. Math. Comput., 219:4 (2012), 1793–1804 | MR | Zbl

[4] Kudryashov, N. A., Safonova, D. V., and Biswas, A., “Painlevé Analysis and a Solution to the Traveling Wave Reduction of the Radhakrishnan – Kundu – Lakshmanan Equation”, Regul. Chaotic Dyn., 24:6 (2019), 607–614 | DOI | MR | Zbl

[5] Kudryashov, N. A., “Lax Pairs and Special Polynomials Associated with Self-Similar Reductions of Sawada – Kotera and Kupershmidt Equations”, Regul. Chaotic Dyn., 25:1 (2020), 59–77 | DOI | MR | Zbl

[6] Kudryashov, N. A., “Solitary and Periodic Solutions of the Generalized Kuramoto – Sivashinsky Equation”, Regul. Chaotic Dyn., 13:3 (2008), 234–238 | DOI | MR | Zbl

[7] Gaber, A. A., Aljohani, A. F., Ebaid, A., and Tenreiro Machado, J., “The Generalized Kudryashov Method for Nonlinear Space-Time Fractional Partial Differential Equations of Burgers Type”, Nonlinear Dyn., 95:1 (2019), 361–368 | DOI | MR | Zbl

[8] Kaplan, M., Hosseini, K., Samadani, F., and Raza, N., “Optical Soliton Solutions of the Cubic-Quintic Nonlinear Schrödinger's Equation including an Anticubic Term”, J. Mod. Opt., 65:12 (2018), 1431–1436 | DOI

[9] Taghizade, N., Mirzazadeh, M., and Mahmoodirad, A., “Application of Kudryashov Method for High-Order Nonlinear Schrödinger Equation”, Indian J. Phys., 87:8 (2013), 781–785 | DOI

[10] Foroutan, M., Manafian, J., and Taghipour-Farshi, H., “Exact Solutions for Fitzhugh – Nagumo Model of Nerve Excitation via Kudryashov Method”, Opt. Quant. Electron., 49:11 (2017), 352, 11 pp. | DOI

[11] Mirzazadeh, M., Ekici, M., Sonmezoglu, A., Eslami, M., Zhou, A., Kara, A. H., Milovic, D., Majid, F. B., Biswas, A., and Belić, M., “Optical Solitons with Complex Ginzburg – Landau Equation”, Nonlinear Dyn., 85:3 (2016), 1979–2016 | DOI | MR | Zbl

[12] Mirzazadeh, M., Eslami, M., and Biswas, A., “1-Soliton Solution of KdV6 Equation”, Nonlinear Dyn., 80:1–2 (2015), 387–396 | DOI | MR | Zbl

[13] Mirzazadeh, M., Eslami, M., and Biswas, A., “Dispersive Optical Solitons by Kudryashov's Method”, Optik, 125:23 (2014), 6874–6880 | DOI

[14] Hosseini, K., Bejarbaneh, E. Y., Bekir, A., and Kaplan, M., “New Exact Solutions of Some Nonlinear Evolution Equations of Pseudoparabolic Type”, Opt. Quant. Electron., 49:7 (2017), 241, 10 pp. | DOI

[15] Amabili, M., Nonlinear Vibrations and Stability of Shells and Plates, Cambridge Univ. Press, Cambridge, 2008, xvi+374 pp. | MR | Zbl

[16] Akust. Zh., 48:6 (2002), 725–740 (Russian) | DOI

[17] Smirnov, V. V., Manevitch, L. I., Strozzi, M. and Pellicano, F., “Nonlinear Optical Vibrations of Single-Walled Carbon Nanotubes: 1. Energy Exchange and Localization of Low-Frequency Oscillations”, Phys. D, 325 (2016), 113–125 | DOI | MR | Zbl

[18] Korteweg, D. J. and de Vries, G., “On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves”, Philos. Mag. (5), 39:240 (1895), 422–443 | DOI | MR

[19] Tagare, S. G. and Chakrabarti, A., “Solution of a Generalized Korteweg – de Vries Equation”, Phys. Fluids, 17:6 (1974), 1331–1332 | DOI

[20] Schamel, H., “A Modified Korteweg – de Vries Equation for Ion Acoustic Waves due to Resonant Electrons”, J. Plasma Phys., 9:3 (1973), 377–387 | DOI | MR

[21] Kawahara, T., “Oscillatory Solitary Waves in Dispersive Media”, J. Phys. Soc. Jpn., 33:1 (1972), 260–264 | DOI

[22] Schneider, G. and Wayne, C. E., “The Rigorous Approximation of Long-Wavelength Capillary-Gravity Waves”, Arch. Ration. Mech. Anal., 162:3 (2002), 247–285 | DOI | MR | Zbl

[23] Kangalgil, F., “Travelling Wave Solutions of the Schamel – Korteweg – de Vries and the Schamel Equations”, J. Egyptian Math. Soc., 24:4 (2016), 526–531 | DOI | MR | Zbl

[24] Mancas, S. C., “Traveling Wave Solutions to Kawahara and Related Equations”, Differ. Equ. Dyn. Syst., 27:1–3 (2019), 19–37 | DOI | MR | Zbl

[25] El-Kalaawy, O. H., “Exact Solitary Solution of Schamel Equation in Plasmas with Negative Ions”, Phys. Plasmas, 18:11 (2011), 112302, 8 pp. | DOI

[26] Biswas, A., “Solitary Wave Solution for the Generalized Kawahara Equation”, Appl. Math. Lett., 22:2 (2009), 208–210 | DOI | MR | Zbl

[27] Zemlyanukhin, A. I., Andrianov, I. V., Bochkarev, A. V., and Mogilevich, L. I., “The Generalized Schamel Equation in Nonlinear Wave Dynamics of Cylindrical Shells”, Nonlinear Dyn., 98:1 (2019), 185–194 | DOI | MR | Zbl

[28] Mogilevich, L. I., Ivanov, S. V., and Blinkov, Yu. A., “Modeling of Nonlinear Waves in Two Coaxial Physically Nonlinear Shells with a Viscous Incompressible Fluid between Them, Taking into Account the Inertia of Its Motion”, Russian J. Nonlinear Dyn., 16:2 (2020), 275–290 | MR | Zbl